Assume that a function $f$ is defined such that $xf\left(x\right)$ is integrable: \begin{equation} \int_{-\infty}^{\infty}\lvert xf\left(x\right)\rvert \mathrm{d}x < \infty. \end{equation} Then the function $xf\left(x\right)$ is of a Fourier transform, and so does $-2\pi i x f\left(x\right)$. The derivation is given by \begin{equation} \begin{aligned} \mathcal{F}\left(-2\pi i x f\left(x\right)\right) &= \int_{-\infty}^{\infty}\left(-2\pi i x\right)e^{-2\pi i s x}f\left(x\right)\mathrm{d}x\\ &= \int_{-\infty}^{\infty}\left(\frac{\mathrm{d}}{\mathrm{d}s}e^{-2\pi i s x}\right)f\left(x\right)\mathrm{d}x\\ &\stackrel{1}{=}\frac{\mathrm{d}}{\mathrm{d}s}\int_{-\infty}^{\infty}e^{-2\pi i s x}f\left(x\right)\mathrm{d}x\\ &= \frac{\mathrm{d}}{\mathrm{d}s}\left(\mathcal{F}f\right)\left(s\right). \end{aligned} \end{equation}
I am not sure why in step 1, the differential can be moved out. The reason given by the author is that $xf\left(x\right)$ is integrable. Can someone let me know more details about the argument? Also, it was mentioned that the derivative is continuous. Can someone also explain why the derivative is continuous?