Here is an explicit way to proceed, we are calculating the last integral in the OP, denoted here by $J$:
$$
\begin{aligned}
J
&=
\int_0^{1/2}\frac 4u\;\arcsin^2 u\; du\qquad\text{(Substitution: $u=\sin x$)}\\
&=
\int_0^a\frac 4{\sin x}\;x^2\; \cos x\; dx\qquad\text{(where $a=\arcsin (1/2)=\pi/6$)}\\
&=
4
\int_0^a\frac x{\tan x}\;x\; dx\\
&=
4
\int_0^a\left(\frac {2ix}{e^{2ix}-1}+ix\right)\;x\; dx\\
&=
4\Re
\int_0^a\frac {2ix}{e^{2ix}-1}\;x\; dx\\
&=
-\Re
\int_0^a\frac {2ix}{e^{2ix}-1}\;2ix\; d(2ix)\\
&=
-\Re
\int_0^{2ia}\frac {X^2}{e^X-1}\;dX\\
&=
-\Re
\left[
\
\color{gray}{
-\frac 13X^3}
+ X^2\log(1-e^X)
+ 2X\operatorname{Li}_2(e^X)
- 2\operatorname{Li}_3(e^X)
\
\right]_0^{2ia}
\\
&=
-\Re
\left[
\
-a^2\log(1-e^{2ia})
+ 4ia\operatorname{Li}_2(e^{2ia})
- 2\operatorname{Li}_3(e^{2ia})
+ 2\operatorname{Li}_3(e^0)
\
\right]
\\
&=
-\Re
\left[
\
0
+ 4ia\operatorname{Li}_2(e^{2ia})
- 2\operatorname{Li}_3(e^{2ia})
+ 2\zeta(3)
\
\right]
\\
&=
-\Re
\left[
\
4ia\operatorname{Li}_2(b)
- 2\operatorname{Li}_3(b)
+ 2\zeta(3)
\
\right]
\ .
\end{aligned}
$$
The logarithmic term disappeared because
$$
\Re \log(1-e^{2ia})
=
\log |1-e^{2ia}|
=
\log |1-e^{2i\pi/6}|
=
\log |e^{-2i\pi/6}|
=\log 1
=0\ .
$$
The value of $b$ is explicitly
$$
b = e^{2ia}
=e^{2i\pi/6}
=e^{i\pi/3}
\ ,
$$
so $b$ is the above primitive root of unity of order six.
One can show the relation:
$$
\Re
\operatorname{Li}_3(b)
=\frac 13\operatorname{Li}_3(1)
=\frac 13\zeta(3)\ .
$$
This is seen for instance after a series expansion:
$$
\begin{aligned}
&2\Re\operatorname{Li}_3(b)
=
\operatorname{Li}_3(b) + \operatorname{Li}_3(\bar b)
\\
&=
\frac 1{1^3}\underbrace{(b+\bar b)}_{=1}
+
\frac 1{2^3}\underbrace{(b^2+\bar b^2)}_{=-1}
+
\frac 1{3^3}\underbrace{(b^3+\bar b^3)}_{=-2}
+
\frac 1{4^3}\underbrace{(b^4+\bar b^4)}_{=-1}
+
\frac 1{5^3}\underbrace{(b^5+\bar b^5)}_{=1}
+
\frac 1{6^3}\underbrace{(b^6+\bar b^6)}_{=2}
+
\dots\text{ with $6$-periodic repetitions}
\\
&=
\frac 1{1^3}(1)
+
\frac 1{2^3}(1-\color{blue}{2})
+
\frac 1{3^3}(1-\color{darkgreen}{3})
+
\frac 1{4^3}(1-\color{blue}{2})
+
\frac 1{5^3}(1)
+
\frac 1{6^3}(1-\color{blue}{2}-\color{darkgreen}{3}+\color{red}{6})
+
\dots\text{ with $6$-periodic repetitions}
\\
&=
\zeta(3)\left(
1
-
\frac{\color{blue}{2}}{2^3}
-
\frac{\color{darkgreen}{3}}{3^3}
+
\frac{\color{red}{6}}{6^3}
\right)
\\
&=
\zeta(3)
\left(
1
-
\frac{\color{blue}{2}}{2^3}
\right)
\left(
1-
\frac1{\color{darkgreen}{3}}{3^3}
\right)
=\zeta(3)\cdot\frac 34\cdot\frac 89
=\zeta(3)\cdot\frac 23\ .
\end{aligned}
$$
In a similar manner we can (try to) look into the dilogarithmic part.
$$
\begin{aligned}
&2\Re i\operatorname{Li}_2(b)
=\Re i(
\operatorname{Li}_2(b) - \operatorname{Li}_2(\bar b))
\\
&=
\frac i{1^2}\underbrace{(b-\bar b)}_{=i\sqrt 3}
+
\frac i{2^2}\underbrace{(b^2-\bar b^2)}_{=i\sqrt 3}
+
\frac i{3^2}\underbrace{(b^3-\bar b^3)}_{=0}
+
\frac i{4^2}\underbrace{(b^4-\bar b^4)}_{=-i\sqrt 3}
+
\frac i{5^2}\underbrace{(b^5-\bar b^5)}_{=-i\sqrt 3}
+
\frac i{6^2}\underbrace{(b^6-\bar b^6)}_{=0}
+
\dots\text{ with $6$-periodic repetitions}
\\
&=
\sqrt3\left(
\frac1{1^2}
+
\frac 1{2^2}
-
\frac1{4^2}
-
\frac 1{5^2}
+
\dots
\right)\text{ with $6$-periodic repetitions}
\\
&=
\frac {\sqrt3}{18}
\left(
\psi'\left(\frac 16\right)
+
\psi'\left(\frac 13\right)
\right)
-\frac {4 {\sqrt3}}{27}\pi^2
\ .
\end{aligned}
$$
We have a thus some formula for the expression involving corresponding
special values $L(2,\chi)$ of the Dirichlet $L$-function computed in $2$ w.r.t. some characters $\chi$ with periodicity modulo six,
and in general we can expect some $\psi$-values as in:
https://mathworld.wolfram.com/DirichletL-Series.html
We can do slightly better. Using $b^4=-b$ and the dilogarithmic relation
$\operatorname{Li}_2(x)+\operatorname{Li}_2(-x)=\frac 12\operatorname{Li}_2(x^2)$,
we obtain:
$\operatorname{Li}_2(b)+\operatorname{Li}_2(b^4)=\frac 12\operatorname{Li}_2(b^2)$.
Here, $b^2$ and $b^4$ are cubic primitive units, so the periodicity is reduced.
Writing series for instance, we get $\operatorname{Li}_2(b^4)=
-\operatorname{Li}_2(b^2)$. This gives:
$$
\begin{aligned}
\Im \operatorname{Li}_2(b)
&=\frac 32
\Im \operatorname{Li}_2(b^2)
\\
&=
\frac {3\sqrt 3}4
\left(
\frac1{1^2}
-
\frac 1{2^2}
+
\frac1{4^2}
-
\frac 1{5^2}
+
\dots
\right)\text{ with $3$-periodic repetitions}
\\
&=
\frac {3\sqrt 3}4
\left(
\frac 29\psi'\left(\frac 13\right)
-\frac4{27}\pi^2
\right)\ .
\end{aligned}
$$
Here, for instance, the sum of the inverses of $1^2$, $4^2$, $7^2$, ... is $\frac 19\psi'\left(\frac 13
\right)$.
Putting all together:
$$
\color{blue}{
\begin{aligned}
J
&=
\frac 23\pi\cdot \Im \operatorname{Li}_2(b)
- \frac 43\zeta(3)
\\
&=
\pi\cdot \Im \operatorname{Li}_2(b^2)
- \frac 43\zeta(3)
\ .
\end{aligned}
}
$$
(And the dilogarithmic values have expressions in terms of $\psi'$ computed in $1/3$.)
Numerical check using pari/gp:
? \p 50
? J = intnum( u=0, 1/2, 4/u*asin(u)^2);
? b = exp(I*Pi/3);
? J
%158 = 0.52294619213333510849118518352730354016304459174398
? 2/3*Pi*imag(dilog(b)) - 4/3*zeta(3)
%159 = 0.52294619213333510849118518352730354016304459174398
? Pi*imag(dilog(b^2)) - 4/3*zeta(3)
%160 = 0.52294619213333510849118518352730354016304459174398
Numerical check using sage:
sage: var('x,u,k');
sage: J = integral( 4/u * arcsin(u)^2, u, 0, 1/2, hold=True )
sage: J.n()
0.5229461921333352
sage: b = (1 + i*sqrt(3))/2
sage: ( 2/3 * pi * imag(dilog(b)) - 4/3 * zeta(3) ).n( digits=50 )
0.52294619213333510849118518352730354016304459174398
sage: ( pi * imag(dilog(b^2)) - 4/3 * zeta(3) ).n( digits=50 )
0.52294619213333510849118518352730354016304459174398
sage: imag( dilog(b) ).n( digits=50 )
1.0149416064096536250212025542745202859416893075303
sage: imag( 3/2 * dilog(b^2) ).n( digits=50 )
1.0149416064096536250212025542745202859416893075303
sage: ( sum( 1/(3k+1)^2 - 1/(3k+2)^2, k, 0, oo) * 3*sqrt(3)/4 ).n( digits=50 )
1.0149416064096536250212025542745202859416893075303
sage: sum( 1/(3k+1)^2 - 1/(3k+2)^2, k, 0, oo)
-4/27pi^2 + 2/9psi(1, 1/3)
sage: var('X');
sage: integral( X^2 / (exp(X) - 1), X)
-1/3X^3 + X^2log(-e^X + 1) + 2Xdilog(e^X) - 2*polylog(3, e^X)
(Please omit this coding section, if this feels misplaced, it was done only for my calm sleep, so that i can easily double check the computations next day with better eyes.)
0.522946192133335. If we plug this into an inverse symbolic calculator the only symbolic representation it knows about is exactly the sum you're trying to compute. – Chris Grossack May 19 '21 at 18:26