Finding the radius of the circle is an operation which is invariant by translation.
Let us operate a translation bringing the center of the sphere at the origin, using vector
$$T=\begin{pmatrix}-1\\-1\\-1\end{pmatrix}$$
The images of points $A,B,C,\Omega$ (where $\Omega$ is the center of the sphere) become:
$$A'=\begin{pmatrix}1\\1\\s\end{pmatrix}, \ \ B'=\begin{pmatrix}-1\\s\\1\end{pmatrix}, \ \ C'=\begin{pmatrix}0\\0\\2\end{pmatrix}, \ \ O=\begin{pmatrix}0\\0\\0\end{pmatrix}$$
Where:
$$s:=\sqrt{2}$$
We check that points $A',B',C'$ belong to the sphere with center $O$ and radius $2$.
The equation of plane $P:=A'B'C'$ is easily found to be:
$$\det \begin{pmatrix}1&-1&0&x\\
1&s&0&y\\
s&1&2&z\\
1&1&1&1\end{pmatrix}=0$$
giving:
$$(3-2s)x+(s-3)y+(-1-s)z+(2+2s)=0\tag{1}$$
The (shortest) distance from origin $O$ to plane $P$ is therefore:
$$d=\dfrac{2+2s}{\sqrt{(3-2s)^2+(s-3)^2+(-1-s)^2}}=\dfrac{2+2s}{\sqrt{31-16s}}$$
$$d\approx 1.6687$$
But $d=OD$ where $D$ is the center of the circumscribed circle to $A'B'C'$. Therefore, using Pythagoras in triangle $ODA'$ (see the figure in the referenced document given by @Robin to Roxel):
$$OD^2+DA'^2=OA'^2 \ \iff \ \ \text{radius} = DA'=\sqrt{OA'^2-OD^2}\approx \sqrt{4-1.6687^2}=1.1025$$
In order to find the coordinates of $D$, just express the fact that :
$$\vec{OD}=k\begin{pmatrix}(3-2s)\\(s-3)\\(-1-s)\end{pmatrix}$$
for a certain constant $k$ where we have taken the normal vector to plane $A'B'C'$ (see equation (1)).
Knowing that $\vec{OD}^2=d^2$, one obtains readily the value of $k$. In this way, (2) gives us the coordinates of $D$, Now it remains to add to these coordinates the opposite of the coordinates of translation vector $T$ to obtain the coordinates of the center of original triangle $ABC$.