Here is another approach without using the $L^{1}$ translation fact, maybe somehow more complicated, but it depends:
By a step function $\varphi$ we mean that $\varphi$ is a finite linear combination of the characteristic functions of intervals.
Now by Lebesgue Dominated Convergence Theorem one has $\int\min(\varphi(x),\varphi(x+1/n))dx\rightarrow\int\varphi$ for any step function $\varphi$.
Use the well-known fact that step functions are $L^{1}$ dense, we pick a sequence $(\varphi_{N})$ of step functions such that $\varphi_{N}(x)\rightarrow f(x)$ a.e. and $\int|\varphi_{N}(x)-\varphi_{N-1}(x)|dx<2^{-N}$ for all $N=1,2,...$
By the inequality that $|\min(a,b)-a|\leq|b-a|$, we can further assume that $f,\varphi_{N}\geq 0$. The result will follow by triangle inequality once we consider $f=f^{+}-f^{-}$.
Now we see that
\begin{align*}
&\lim_{n\rightarrow\infty}\int\min(f(x),f(x+1/n))dx\\
&=\lim_{n\rightarrow\infty}\int\lim_{N\rightarrow\infty}\min(f(x),\varphi_{N}(x+1/n))dx\\
&=\lim_{n\rightarrow\infty}\lim_{N\rightarrow\infty}\int\min(f(x),\varphi_{N}(x+1/n))dx\\
&=\lim_{n\rightarrow\infty}\sum_{N=1}^{\infty}\int\bigg(\min(f(x),\varphi_{N}(x+1/n))-\min(f(x),\varphi_{N-1}(x+1/n))\bigg)dx,
\end{align*}
where we have used Lebesgue Dominated Convergence Theorem in the second equality by the observation that $0\leq\min(f(x),\varphi_{N}(x+1/n))\leq f(x)$, and in the last equality we set $\varphi_{0}=0$.
Recall the inequality that $|\min(a,b)-\min(a,c)|\leq|b-c|$, one has
\begin{align*}
&\left|\int\bigg(\min(f(x),\varphi_{N}(x+1/n))-\min(f(x),\varphi_{N-1}(x+1/n))\bigg)dx\right|\\
&\leq\int|\varphi_{N}(x+1/n)-\varphi_{N-1}(x+1/n)|dx\\
&=\int|\varphi_{N}(x)-\varphi_{N-1}(x)|dx\\
&<\dfrac{1}{2^{N}}.
\end{align*}
Since $\sum_{N}2^{-N}<\infty$, once again by Lebesgue Dominated Convergence Theorem we have
\begin{align*}
&\lim_{n\rightarrow\infty}\sum_{N=1}^{\infty}\int\bigg(\min(f(x),\varphi_{N}(x+1/n))-\min(f(x),\varphi_{N-1}(x+1/n))\bigg)dx\\
&=\sum_{N=1}^{\infty}\lim_{n\rightarrow\infty}\int\bigg(\min(f(x),\varphi_{N}(x+1/n))-\min(f(x),\varphi_{N-1}(x+1/n))\bigg)dx\\
&=\sum_{N=1}^{\infty}\int\bigg(\min(f(x),\varphi_{N}(x))-\min(f(x),\varphi_{N-1}(x))\bigg)dx\\
&=\lim_{N\rightarrow\infty}\int\min(f(x),\varphi_{N}(x))dx\\
&=\int\lim_{N\rightarrow\infty}\min(f(x),\varphi_{N}(x))dx\\
&=\int f(x)dx.
\end{align*}