2

Let $f \colon G \to H$ be an homomorphism, in the proof of the theorem 5.11, Hungerford states that $f^{-1}(f(K)) = K$ if and only if $\ker f < K$ for $K$ is a subgroup of $G$.

I proved the forward direction which is rather straightforward. But Im struggling with the backward direction.

Suppose $\ker < K$, how to prove that $f(f^{-1}(K)) = K$?

Andy
  • 537

2 Answers2

0

Hint:

Show $f^{-1}\bigl(f(K)\bigr)=K\,\ker f$ (in multiplicative notation), and use the $2^{\textit{nd}}$ isomorphism theorem.

Bernard
  • 179,256
0

Elementary proof.

You already proved that if $f^{-1}(f(K)) = K$, then $\ker f \subseteq K$. Suppose now that $\ker f \subseteq K$ and let $x \in f^{-1}(f(K))$. Then $f(x) \in f(K)$ and hence there exists $y \in K$ such that $f(x) = f(y)$. It follows that $f(xy^{-1}) = f(x)f(y)^{-1} = 1$ and thus $xy^{-1} \in \ker f$, whence $xy^{-1} \in K$. Since $y \in K$, it follows that $x = (xy^{-1})y \in K$. Thus $f^{-1}(f(K)) \subseteq K$. The opposite inclusion $K \subseteq f^{-1}(f(K))$ is trivial, and thus $f^{-1}(f(K)) = K$.

J.-E. Pin
  • 42,871