Let $d_1, d_2, \dots, d_n \in {\Bbb R}$. Build the diagonal matrix ${\bf D} := \operatorname{diag} \left( d_1, d_2, \dots, d_n \right)$. Note that
$$ {\bf D} := \sum_{i=1}^n d_i {\bf e}_i {\bf e}_i^\top = \sum_{i=1}^n | d_i | \left( \operatorname{sgn} \left( d_i \right) \, {\bf e}_i \right) {\bf e}_i^\top = \sum_{i=1}^n | d_i | \, {\bf e}_i \left( \operatorname{sgn} \left( d_i \right) \, {\bf e}_i \right)^\top $$
where $\operatorname{sgn}$ denotes the sign function. Thus, the singular values of a real diagonal matrix are the absolute values of the entries on the main diagonal, whereas the left and right singular vectors are $\pm 1$ ("signed") combinations of the vectors of the (same) canonical basis. Hence, the spectral norm of a diagonal matrix is the $\infty$-norm of its main diagonal
$$ \| {\bf D} \|_2 := \sigma_{\max} ({\bf D}) = \color{blue}{\max_{1 \leq i \leq n} | d_i | } $$
What if $d_1, d_2, \dots, d_n \in {\Bbb C}$?