$$\begin{bmatrix} Z^{11}& Z^{12} & Z^{13} \\ Z^{21} & Z^{22} &Z^{23} \\ Z^{31} & Z^{32} & Z^{33} \\ \end{bmatrix}\begin{bmatrix} \vec{v} \cdot e_1 \\ \vec{v} \cdot e_2 \\ \vec{v} \cdot e_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
The above relation is equivalent too:
$$ Z^{ij} \vec{v} \cdot e_j = v_i$$
And, I can write: $\vec{v} \cdot Z^{ij} e_j = v_i$ and I could use defnition of dual basis to make it $\vec{v} \cdot e^i= v_i$.
What would the linear algebra action equivalent to the simplification that I have done in the indical tensor notation here?
Note : $e_i$ are basis vectors. More context in this answer