Let $C_{1}=\{x\in[a,b]\mid f\mbox{ is continuous at }x\}$ and $C_{2}=[a,b]\setminus C_{1}$.
Let $c\in\mathbb{R}$ be given and define $A=\{x\in[a,b]\mid f(x)<c\}$.
Note that $A\cap C_{2}$ is a subset of the Lebesgue measure-zero
set $C_{1}$, so $A\cap C_{2}$ is Lebesgue measurable.
Next, we go to show that $C_{1}$ is a $G_{\delta}$ subset of $[a,b]$. Let
$$
B_{n}=\{x\in[a,b]\mid\exists\delta>0\mbox{ s.t. }|f(s)-f(t)|<\frac{1}{n}\mbox{ whenever } s,t\in[a,b]\cap(x-\delta,x+\delta)\}.
$$
We assert that $B_{n}$ is an open subset of $[a,b]$ and that $C_{1}=\cap_{n}B_{n}$.
Let $x\in B_{n}$. Choose $\delta>0$ such that $|f(s)-f(t)|<\frac{1}{n}\mbox{ whenever } s,t\in[a,b]\cap(x-\delta,x+\delta).$ Let
$r=\delta/2$. Let $y\in[a,b]\cap(x-r,x+r)$ be arbitrary. Let $\delta'=\delta/4$.
Observe that $y-\delta'\geq x-r-\delta'>x-\delta$ and $y+\delta'\leq x+r+\delta'<x+\delta$.
It follows that $(y-\delta',y+\delta')\subseteq(x-\delta,x+\delta)$.
Hence, for any $s,t\in[a,b]\cap(y-\delta',y+\delta')$, we have $|f(s)-f(t)|<\frac{1}{n}$.
This shows that $y\in B_{n},$ so $[a,b]\cap(x-r,x+r)\subseteq B_{n}$.
Therefore, $B_{n}$ is an open subset of $[a,b]$.
That $C_{1}\subseteq\cap_{n}B_{n}$ follows from the definition of
continuity (and triangle inequality). To prove the reverse inclusion,
let $x\in\cap_{n}B_{n}$. Let $\varepsilon>0$ be given. Choose $n$
such that $\frac{1}{n}<\varepsilon$. Since $x\in B_{n}$, we can
choose $\delta>0$ such that $|f(s)-f(t)|<\frac{1}{n}\mbox{ whenever } s,t\in[a,b]\cap(x-\delta,x+\delta).$
In particular, for any $t\in[a,b]\cap(x-\delta,x+\delta)$, we have
that $|f(x)-f(t)|<\frac{1}{n}<\varepsilon$. Therefore $x\in C_{1}$.
This shows that $\cap_{n}B_{n}\subseteq C_{1}$.
Let $g=f\mid_{C_{1}}$, the restriction of $f$ on $C_{1}$, then
$g$ is a continuous function. Therefore, $g^{-1}\left((-\infty,c)\right)$
is an open subset of $C_{1}$ (with respect to the relative topology).
Choose an open set $U\subseteq\mathbb{R}$ such that $g^{-1}\left((-\infty,c)\right)=U\cap C_{1}$.
On the other hand, notice that $g^{-1}\left((-\infty,c)\right)=A\cap C_{1}$.
Therefore $A\cap C_{1}=U\cap C_{1}$, which is Lebesbue measurable.
Finally, $A=(A\cap C_{1})\cup(A\cap C_{2})$, which is Lebesgue measurable.