A Markov transition matrix has all nonnegative entries and so by the Perron-Frobenius theorem has real, positive eigenvalues. In particular the largest eigenvalue is 1 by property 11 here. Furthermore in these notes (sec 10.3) it says that the eigenvalues of $P$ are $1 = \lambda_1 > \lambda_2 \geq \dots \geq \lambda_N \geq -1$.
But how can a transition matrix $P$ have eigenvalues less than 1? Since the matrix is acting on probability distributions $v$, which have to have $\sum_i v_i = 1$, we cannot have $Pv = cv$ with $c\neq 1$ since $\sum_i cv_i = c$.