I have to find the following limit without using L'Hôpital's rule:
$$\lim\limits_{x \to 0}\dfrac{\tan{x}-\sin{x}}{x^3}$$
I first converted $\tan{x}$ to $\frac{\sin{x}}{\cos{x}}$, and factored like this:
$$\dfrac{\dfrac{\sin{x}}{\cos{x}}-\sin{x}}{x^3}$$ $$\Rightarrow \dfrac{1}{x}\dfrac{\sin{x}}{x}\dfrac{1}{\cos{x}}\left(\dfrac{1-\cos{x}}{x}\right)$$
I can find the limit of each fraction except the first which is $\frac{1}{x}$.
How can I solve this without using L'Hospital's rule?