We know by Mertens' theorem, Let $(a_n)_{n≥0}$ and $(b_n)_{n≥0}$ be real or complex sequences, then if $\sum_{n=0}^{+\infty}a_n$ converges absolutely and $\sum_{n=0}^{+\infty}b_n$ converges only conditionally, then their Cauchy product $\sum_{n=0}^{+\infty}c_n$ (with $c_n:=\sum_{i+j=n}a_i\cdot b_j$) converges to $AB$. ($A:=\sum_{n=0}^{+\infty}a_n,B:=\sum_{n=0}^{+\infty}b_n$)
But can we say that $\sum_{n=0}^{+\infty}c_n$ converges absolutely? I searched through the Internet and found nothing about it.