A common technique is to strengthen the induction hypothesis.
In particular, integrating and expanding $x^{m-1}(1-x)^n$ gives a hint that we can consider using:
$$ \sum_{k=0}^n (-1)^k \frac{n \choose k}{m+k} = \frac{(m-1)!n!}{(m+n)!}$$
Let's do induction to show it's true for all $n$ starting at $0$.
If $n=0$, we have $\frac{1}{m}=\frac{(m-1)!0!}{m!}$.
Let $0 \leq n$. Let's show it being true for $n$ implies it's true for $n+1$.
We have starting with the LHS:
$$\sum_{k=0}^{n+1} (-1)^k \frac{n+1 \choose k}{m+k}=\sum_{k=0}^{n+1} (-1)^k \frac{{n \choose k}+{n\choose k-1}}{m+k}$$
$$=\sum_{k=0}^{n} (-1)^k \frac{{n \choose k}}{m+k}-\sum_{k=0}^{n} (-1)^k \frac{{n\choose k}}{m+1+k} $$
Using the inductive hypothesis for $n$:
$$=\frac{(m-1)!n!}{(m+n)!}-\frac{m!n!}{(m+n+1)!}$$
$$=\frac{(m-1)!n!}{(m+n)!} (1 -\frac{m}{m+n+1})$$
$$=\frac{(m-1)!n!}{(m+n)!} \frac{n+1}{m+n+1}$$
$$=\frac{(m-1)!(n+1)!}{(m+n+1)!}$$
Thus, if it's true for a given $n$, then it's true for $n+1$, finishing the inductive proof.
In particular, it's true when $m=n-1$ proving your initial equality.