4

Solve integral $$\int\frac{1}{(x^2-3)\sqrt{x^2+2}}dx$$

I tried substituting $$x=\tan(t)=\frac{\sin(t)}{\cos(t)}\:;\:dx=\frac{1}{\cos^2(t)}dt$$

So $$\:{x^2+2}=\frac{\sin^2(t)+2\cos^2(t)}{\cos^2(t)}=\frac{(1-\cos^2(t))+2\cos^2(t)}{\cos^2(t)}=\frac{1+\cos^2(t)}{\cos^2(t)}=\tan^2(t)$$

$$\sqrt{x^2+2}=\tan(t)$$

And $$\:x^2-3=\frac{1-4\cos^2(t)}{\cos^2(t)}$$

After putting both into main integral i have $$\int\frac{\cos(t)}{\sin(t)\cdot(1-4\cos^3(t))}dt=?$$

Now need a bit of help if possible.

p.s Is there any other method or is it fine with this sub.?

Thank you in advance :)

Bowei Tang
  • 3,763
John
  • 519

6 Answers6

5

If you do $\require{cancel}x=\sqrt2\tan(\theta)$ and $\mathrm dx=\sqrt2\sec^2(\theta)\,\mathrm d\theta$, then you will get$$\int\frac{\cancel{\sqrt2}\sec^2(\theta)}{\left(2\tan^2(\theta)-3\right)\cancel{\sqrt2}\sqrt{\tan^2(\theta)+1}}\,\mathrm d\theta.\tag1$$Since $1+\tan^2=\sec^2$, $(1)$ becomes\begin{align}\int\frac{\sec(\theta)}{\left(2\tan^2(\theta)-3\right)}\,\mathrm d\theta&=\int\frac{\cos(\theta)}{2\sin^2(\theta)-3\cos^2(\theta)}\,\mathrm d\theta\\&=\int\frac{\cos(\theta)}{5\sin^2(\theta)-3}\,\mathrm d\theta.\end{align}And now you can do $\sin(\theta)=y$ and $\cos(\theta)\,\mathrm d\theta=\mathrm dy$.

  • @Jose thank you so much for your answer, how could i know what to substitute x with, in your case $x=\sqrt{2}tan(\theta)$, p.s im not so good with theta sub. :) – John Apr 10 '21 at 21:10
  • 2
    I chose that substitution so that $\sqrt{x^2+2}$ becomes $\sqrt{2\tan^2(\theta)+2}=\sqrt2\sec(\theta)$. So, we do not have a square root anymore. – José Carlos Santos Apr 10 '21 at 21:15
2

You have made a mistake. You write that $$x^2+2=\tan^2 t$$ but this is clearly false, since $x^2=\tan^2 t$! Your error is in the use of the identity $$1+\tan^2x\equiv \sec^2 x.$$ You mistakenly write that $$1+\sec^2 x\equiv\tan^2 x.$$ Once you have fixed this and had another bash at the integral I'll be happy to help if you're still stuck.

  • this mistake was made cause i sub. $x=tan(t)$, need to know what to substitute x with if possible, and for what reason, e.x why i cant sub.$x=tan(t)$ :) – John Apr 10 '21 at 21:15
  • @John The substitution in itself is ok (but doesn't work very well). I would also have made the substitution $x=\sqrt2 \tan u$ since in general when we have square roots in the denominator of an integral they are hard to work with, so I'd try to get rid of it. It's usually more simple to get rid of it if it has an $x^2$ term inside, as then we can use trigonometric identities. For example, in your case I know that $1+\tan^2 u\equiv \sec^2 u$, so by substituting $x=\sqrt 2 \tan u $ I made the expression inside the square root a perfect square, and...(continued below) – A-Level Student Apr 10 '21 at 21:18
  • @John ...we can then get rid of the square root as I wanted. – A-Level Student Apr 10 '21 at 21:19
  • Thank you so much for A-Level elaboration :), now im here $\frac{sec(t)}{2tan^2(t)-3}dt$ – John Apr 10 '21 at 21:35
  • @John Nice! For that final part Jose's solution shows how to deal with it with a nice usage of trig formulae. – A-Level Student Apr 10 '21 at 21:37
  • @John Are you ok now, or are you still unclear? – A-Level Student Apr 10 '21 at 21:46
  • @John Use the identity $\cos^2 t\equiv 1-\sin^2 t$. – A-Level Student Apr 10 '21 at 21:52
  • $\int\frac{sec(t)}{2tan^2(t)-3}dt=\int\frac{cos(t)}{2sin^2(t)-3cos^2(t)}dt$ this one – John Apr 10 '21 at 21:58
  • @John Oh, ok. Use the definition of $\tan t$ and $\sec t$ ($\tan t =\frac{\sin t}{\cos t}$ and $\sec t=1/\cos t$) and simply the resulting fraction. – A-Level Student Apr 10 '21 at 22:00
  • A-Level thank you so much, sorry for bothering you, wish you all the best mate :) – John Apr 10 '21 at 22:02
  • 1
    @John no worries, it's always a pleasure to help someone, wishing the same to you too! :) – A-Level Student Apr 10 '21 at 22:02
0

Another method is to substitute $x=\frac1{t}$:

$$\mathcal I=\int\frac{\mathrm dx}{(x^2-3)\sqrt{x^2+2}}$$ $$=\text{sgn}t\int\frac{t\mathrm dt}{(3t^2-1)\sqrt{2t^2+1}}$$

Now, substitute $\sqrt{2t^2+1}=u$:

$$\mathcal I=\frac{\text{sgn}x}2\int\frac{\not{u}\mathrm du}{\not{u}\left(\frac32(u^2-1)-1\right)}$$ $$=\text{sgn}x\int\frac{\mathrm du}{3u^2-5}$$ $$=\frac{\text{sgn}x}{2\sqrt{15}}\ln\left|\frac{\sqrt5-\sqrt3 u}{\sqrt5+\sqrt3 u}\right|+C$$

$$\therefore\boxed{\int\frac{\mathrm dx}{(x^2-3)\sqrt{x^2+2}}=\frac{\text{sgn}x}{2\sqrt{15}}\ln\left|\frac{\sqrt5|x|-\sqrt3 \sqrt{2+x^2}}{\sqrt5|x|+\sqrt3 \sqrt{2+x^2}}\right|+C}$$

Integreek
  • 8,530
0

Setting $x=\dfrac1{\sqrt 2}\left(t-\dfrac1t\right)$ will rationalize the integrand, because $\sqrt{x^2+2}=\dfrac1{\sqrt 2}\left(t+\dfrac1t\right)$.

Then you need to solve

$$\int\frac{2t}{t^4-8t^2+1}dt.$$

This is routine work, by fraction decomposition.

$$\frac{\log(4 + \sqrt{15} - t^2) - \log(-4 + \sqrt{15} + t^2)}{2 \sqrt{15}}+C.$$

0

Substitute $x=\sqrt2\sinh t$:

$$\int\frac{\mathrm dx}{(x^2-3)\sqrt{x^2+2}}$$ $$=\int\frac{\mathrm dt}{2\sinh^2t-3}$$ $$=\int\frac{-\text{sech}^2t\mathrm dt}{3-5\tanh^2t}$$ $$=\frac1{2\sqrt{15}}\ln\left|\frac{\sqrt3+\sqrt5\tanh t}{\sqrt3-\sqrt5\tanh t}\right|+C$$ $$\therefore\boxed{\int\frac{\mathrm dx}{(x^2-3)\sqrt{x^2+2}}=\frac1{2\sqrt{15}}\ln\left|\frac{\sqrt5x-\sqrt3 \sqrt{2+x^2}}{\sqrt5x+\sqrt3 \sqrt{2+x^2}}\right|+C}$$

Integreek
  • 8,530
0

$\textbf{Case 1: }x\in(-\sqrt3,\sqrt3)\implies$Substitute $x=\sqrt3\tanh t$:

$$\int\frac{\mathrm dx}{(x^2-3)\sqrt{x^2+2}}$$ $$=-\frac1{\sqrt3}\int\frac{\mathrm dt}{\sqrt{3\tanh^2t+2}}$$ $$=-\frac1{\sqrt3}\int\frac{\cosh t\mathrm dt}{\sqrt{5\sinh^2t+2}}$$ $$=-\frac1{\sqrt{15}}\sinh^{-1}\left(\frac{\sqrt5\sinh t}{\sqrt2}\right)+C$$ $$=-\frac1{\sqrt{15}}\sinh^{-1}\left(\frac{\sqrt5|x|}{\sqrt2\sqrt{3-x^2}}\right)+C$$

$\textbf{Case 2: }x\in(-\infty,-\sqrt3)\cup(\sqrt3,\infty)\implies$Substitute $x=\sqrt3\coth t$:

$$\int\frac{\mathrm dx}{(x^2-3)\sqrt{x^2+2}}$$ $$=-\frac1{\sqrt3}\int\frac{\mathrm dt}{\sqrt{3\coth^2t+2}}$$ $$=-\frac1{\sqrt3}\int\frac{\sinh t\mathrm dt}{\sqrt{5\cosh^2t-2}}$$ $$=-\frac1{\sqrt{15}}\cosh^{-1}\left(\frac{\sqrt5\cosh t}{\sqrt2}\right)+C$$ $$=-\frac1{\sqrt{15}}\cosh^{-1}\left(\frac{\sqrt3\sqrt{x^2+2}}{\sqrt2\sqrt{3-x^2}}\right)+C$$

Integreek
  • 8,530