$$M = \begin{bmatrix} 1 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & -1 & 1\\ 0 & 0 & 0 & 0 & -1\\ \end{bmatrix}$$
I'm trying to find the exponentiation of this matrix, $e^M$. Wolfram tells me the answer is \begin{bmatrix} e & e & e/2 & 0 & 0\\ 0 & e & e & 0 & 0\\ 0 & 0 & e & 0 & 0\\ 0 & 0 & 0 & e^{-1} & e^{-1}\\ 0 & 0 & 0 & 0 & e^{-1}\\ \end{bmatrix}
But I don't follow how to get here. I tried finding the eigenvectors of $M$ and got $(1,0,0,0,0)$ and $(0,0,0,1,0)$ but I don't know where to go from here.