I'm now solving a difference equation,
$$a_{n+2}=4a_{n+1}-4a_{n},a_1=1,a_2=1.$$
to write it in matrix,
$$\left(\begin{matrix}a_{n+2}\\a_{n+1}\end{matrix}\right)=\left(\begin{matrix}4 & -4 \\ 1 & 0 \\\end{matrix}\right)\left(\begin{matrix}a_{n+1}\\ a_{n} \\\end{matrix}\right).$$
then,
$$\left(\begin{matrix}a_{n+1}\\a_{n}\end{matrix}\right)=\left(\begin{matrix}4 & -4 \\ 1 & 0 \\\end{matrix}\right)^{n-1}\left(\begin{matrix}a_{2}\\ a_{1} \\\end{matrix}\right).$$
but how to calculate $\left(\begin{matrix}4 & -4 \\ 1 & 0 \\\end{matrix}\right)^{n-1}$, since it can't be diagonalized.
and i found the answer should be
$a_n=p(n)\cdot2^n$, $p(n)$is polynomial of degree one.
Why? Can some explain this?