I am trying to prove the process behind complex multiplication in polar form, which is similar to this:
The product of two complex numbers in polar form $r_{1}\,\angle\,\theta_{1}$ and $r_{2}\,\angle\,\theta_{2}$ is $r_{1}r_{2}\,\angle\,(\theta_{1} + \theta_{2})$.
The proof where the polar form is written into rectangular form which will then use sum-to-product formula is already established like this, so I want to try something new.
Can someone verify if my attempt is correct?
Define two complex numbers $z_{1} = a + bi$ and $z_{2} = c + di$. Writing it in polar form, we get $z _{1} = \sqrt{a^{2} + b^{2}}\,\angle\,\tan^{-1}\left(\frac{b}{a}\right)$ and $z_{2} = \sqrt{c^{2} + d^{2}}\,\angle\,\tan^{-1}\left(\frac{d}{c}\right)$, respectively. Also, the product of the two complex numbers $z_{1}z_{2}$ is equal to $(ac - bd) + (ad + bc)i$. Writing this in polar form, we have $z_{1}z_{2} = \sqrt{(ac - bd)^{2} + (ad + bc)^{2}}\,\angle\,\tan^{-1}\left(\frac{ad + bc}{ac - bd}\right)$. Let this product be $z_{3}$.
We then check if the radius of the product is equal to the product of the radii of the factors. \begin{align*}r_{1}r_{2} &\overset{?}{=} r_{3} \\ \left(\sqrt{a^{2} + b^{2}}\right)\left(\sqrt{c^{2} + d^{2}}\right) &\overset{?}{=}\sqrt{(ac - bd)^{2} + (ad + bc)^{2}} \\ \sqrt{(a^{2} + b^{2})(c^{2} + d^{2})} &\overset{?}{=} \sqrt{(ac)^{2} - 2abcd + (bd)^{2} + (ad)^{2} + 2abcd + (bc)^{2}} \\ \sqrt{(ac)^{2} + (ad)^{2} + (bc)^{2} + (bd)^{2}} &\overset{?}{=} \sqrt{(ac)^{2} + (bd)^{2} + (ad)^{2} + (bc)^{2}} \\ \sqrt{(ac)^{2} + (ad)^{2} + (bc)^{2} + (bd)^{2}} &= \sqrt{(ac)^{2} + (ad)^{2} + (bc)^{2} + (bd)^{2}}\end{align*}
Next, we check if the angle of the product is the sum of the angles of the factors. \begin{align*}\theta_{1} + \theta_{2} &\overset{?}{=} \theta_{3} \\\tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) &\overset{?}{=} \tan^{-1}\left(\frac{ad + bc}{ac - bd}\right).\end{align*}
Before proceeding, we must restrict $\theta_{i}$ on the range of the arctangent function which is $(-\frac{\pi}{2},\frac{\pi}{2})$ as the arctangent function. If, for instance, $\mathrm{Re}(z_{i}) = 0$, then the sign of $\mathrm{Im}(z_{i})$ will determine the sign of $\frac{\pi}{2}$. Also, if $\mathrm{Re}(z_{i}) < 0$ and $\mathrm{Im}(z_{i}) > 0$, we can just take the angle of a complex number $z$ where $\mathrm{Re}(z) = \mathrm{Im}(z_{i})$ and $\mathrm{Im}(z) = \mathrm{Re}(z_{i})$.
Rewrite the relation by letting $b$, $d$, $a$, and $c$ take the value of $\frac{b}{a}$, $\frac{d}{c}$, $1$, and $1$. Then, by simplifying, \begin{align*}\tan^{-1}\left(\frac{(\frac{b}{a})}{1}\right) + \tan^{-1}\left(\frac{(\frac{d}{c})}{1}\right) &\overset{?}{=} \tan^{-1}\left(\frac{(1)(\frac{d}{c}) + (\frac{b}{a})(1)}{(1)(1) - (\frac{b}{a})(\frac{d}{c})}\right) \\ \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) &\overset{?}{=} \tan^{-1}\left(\frac{\frac{b}{a} + \frac{c}{d}}{1 - (\frac{b}{a})(\frac{d}{c})}\right)\end{align*}
Then, let $\tan u = \frac{b}{a}$ and $\tan v = \frac{d}{c}$. By substitution, \begin{align*}\tan^{-1}\left(\tan u\right) + \tan^{-1}\left(\tan v\right) &\overset{?}{=} \tan^{-1}\left(\frac{\tan u + \tan v}{1 - (\tan u)(\tan v)}\right) \\ u + v &\overset{?}{=} \tan^{-1}\left(\frac{\tan u + \tan v}{1 - (\tan u)(\tan v)}\right) \\ \tan(u + v) &\overset{?}{=} \frac{\tan u + \tan v}{1 - (\tan u)(\tan v)}\end{align*}
The last relation is known to be true. Thus, $$\tan(u + v) = \frac{\tan u + \tan v}{1 - (\tan u)(\tan v)}$$
Since the product of the radii of the factors is equal to the radius of the product and the angle of the product is equal to the sum of the angles of the factors, therefore, $(r_{1}\,\angle\,\theta_{1})(r_{2}\,\angle\,\theta_{2}) = r_{1}r_{2}\,\angle\,(\theta_{1} + \theta_{2})$.
Edit: Tried to fix the angle problem. "Before proceeding...", in particular.