Prove that the subspace $S^{1}=\{{(x,y)\in \mathbb{R^{2}} : d((x, y),(0,0))=1}\}$ with $d$ the euclidien metric on $\mathbb{R^{2}}$ is locally euclidean.. Let $(x,y)\in S^{1}$ such that $(x,y)\neq (1,0)$.
Then $(x,y)\in S^{1}\setminus{\{(1,0)\}}=\mathbb{R^{2}}\setminus\{(1,0)\}\bigcap S^{1}$ open in $S^{1}$ and we know that $S^{1}\setminus{\{(1,0)\}}$ is homeomorphic to $]0,2\pi[$.
Now for $\{(1,0)\}$, I can't seem to find an open subset of $S^{1}$ that contains $(1,0)$ and homeomorphic to some open subset of $\mathbb{R}$..any help please.