Evaluate $$(2-\sec^2{1^{\circ}})(2-\sec^2{2^{\circ}})(2-\sec^2{3^{\circ}})\cdots(2-\sec^2{44^{\circ}})(2-\sec^2{46^{\circ}})\cdots(2-\sec^2{89^{\circ}})$$
This same problem come from Problem 21:But that problem is very very easy http://purplecomet.org/home/resource/544/HighSchoolSolutions2013.pdf $$(2-\sec^2{1^{\circ}})(2-\sec^2{2^{\circ}})(2-\sec^2{3^{\circ}})\cdots\cdots(2-\sec^2{89^{\circ}})$$
and since $sec^2{45^{\circ}}=2$ so $$(2-\sec^2{1^{\circ}})(2-\sec^2{2^{\circ}})(2-\sec^2{3^{\circ}})\cdots(2-\sec^2{89^{\circ}})=0$$
so I ask this follow problem have value?:$$(2-\sec^2{1^{\circ}})(2-\sec^2{2^{\circ}})(2-\sec^2{3^{\circ}})\cdots(2-\sec^2{44^{\circ}})(2-\sec^2{46^{\circ}})\cdots(2-\sec^2{89^{\circ}})$$ Thank you, and this problem is interesting. we kown that $$2-\sec^2{x}=\dfrac{\sec^2{x}}{\sec{2x}}$$ and we kown $$\sin{1^{0}}\sin{2^{0}}\cdots\sin{89^{0}}=\dfrac{6}{4^{45}}\sqrt{10}$$ This result use this $$\sin{3x}=4\sin{x}\sin{(x+60^{0})}\sin{(60^{0}-x)}$$
so $$\cos{1^{0}}\cos{2^{0}}\cdots\cos{89^{0}}=\dfrac{6}{4^{45}}\sqrt{10}$$ so \begin{align} &(2-\sec^2{1^{\circ}})(2-\sec^2{2^{\circ}})(2-\sec^2{3^{\circ}})\cdots(2-\sec^2{44^{\circ}})(2-\sec^2{46^{\circ}})\cdots(2-\sec^2{89^{0}})\\ &=\dfrac{cos{2^{0}}\cos{4^{0}}\cdots\cos{88^{0}}(-\sin{2^{0}})(-\sin{4^{0}})\cdots(-\sin{88^{0}})}{\cos^2{1^{0}}\cos^2{2^{0}}\cdots\cos^2{89^{0}}}\\ &=\dfrac{(\sin{4^{0}}\sin{8^{0}}\cdots\sin{88^{0}})^2}{A^2} \end{align}
where $A=\dfrac{12}{4^{45}}\sqrt{5}$
so we must find $\sin{4^{0}}\sin{8^{0}}\cdots\sin{88^{0}}$ I think must use $$\sin{3x}=4\sin{x}\sin{(60-x)}\sin{(60+x)}$$
Thank you, I have solve it. I have this result $$(2-\sec^2{1^{\circ}})(2-\sec^2{2^{\circ}})(2-\sec^2{3^{\circ}})\cdots(2-\sec^2{44^{\circ}})(2-\sec^2{46^{\circ}})\cdots(2-\sec^2{89^{\circ}})=2^{88}$$