I need to prove that $\sum \limits _{n=1}^{\infty}\frac{\sin (n)}{n}$ convergent only by Cauchy's test.
Cauchy's test for sequences convergence :
The $\sum \limits _{n=1}^{\infty}a_n$ convergent $\iff$ $\forall \varepsilon >0$ $ \exists$ $ n_0\in \mathbb{N}$ such that $\forall $ $n_0 \le n$ , $\forall$ $p\in \mathbb{N}$ the following holds $\mid S_{n+p}-S_n\mid = \mid a_{n+1}+\dots+a_{n+p}\mid<\varepsilon$
My Attempt:
Let $\varepsilon>0$,$\ p\in\mathbb{N}$. We define $n_0=\frac{p}{\varepsilon}$, and since $-1\le \sin(x)\le 1$ therefore, for each $n\le n_0$: $$\mid \frac{\sin (n+1)}{n+1}+\frac{\sin (n+2)}{n+2}+...+\frac{\sin (n+p)}{n+p} \mid \ \le \ \mid \frac{\sin (n+1)}{n+1}\mid + \mid \frac{\sin (n+2)}{n+2}\mid+...+\mid \frac{\sin (n+p)}{n+p} \mid \le \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+p}\le \frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}=\frac{p}{n}<\varepsilon$$
Is my proof correct? if not so how can I prove it only by Cauchy's test as I said earlier, without any further test - such as Dirichlet, Abel...