In line with this answer, I am trying to find the eigenvalues of:
$\mathbf P\mathbf K\mathbf P^\top=\begin{pmatrix}& d_1 & & & & & & \\d_1 & & e_1 & & & & & \\& e_1 & & d_2 & & & & \\& & d_2 & & e_2 & & & \\& & & e_2 & & d_3 & & \\& & & & d_3 & & e_3 & \\& & & & & e_3 & & d_4 \\& & & & & & d_4 & \end{pmatrix}$
which, by the linked post, are the singular values of : $\mathbf B=\begin{pmatrix}d_1&e_1&&\\&d_2&e_2&\\&&d_3&e_3\\&&&d_4\end{pmatrix}$
and $\mathbf K=\left(\begin{array}{c|c}\mathbf 0&\mathbf B^\top \\\hline \mathbf B&\mathbf 0\end{array}\right)$
All the entries of B are real and positive. I do not know the eigenvectors of $\mathbf P\mathbf K\mathbf P^\top$. I am trying to show that the eigenvalues of the matrix (shown below) are natural numbers (disregarding sign).
However, from another incredibly insightful post of J.M.'s, if we can find a Cholesky factorization of the matrix below, then we can put the factorization in block form:
$\mathbf K=\left(\begin{array}{c|c}\mathbf 0&\mathbf B^\top \\\hline \mathbf B&\mathbf 0\end{array}\right)$
And then there exist a similar matrix $\bf H$ to $\bf K$ such that $\bf H$ is closely related to Golub-Kahan tridiagonal matrix (which has known and nice eigenvalues).
My current efforts are focused around trying to find a nice Cholesky factorization of $\mathbf P\mathbf K\mathbf P^\top$.
Any help would be incredibly appreciated!
Edit: I consider even-order matrices. One such example is the matrix:
$\begin{pmatrix} 0 & 3\sqrt{\frac{3}{2}} & 0 &0 \\ 3\sqrt{\frac{3}{2}} & 0 & 3\sqrt{\frac{5}{2}} & 0\\ 0& 3\sqrt{\frac{3}{2}} & 0 & 3 \sqrt{6}\\ 0& 0 & 3 \sqrt{6} &0 \end{pmatrix}$ with eigenvalues $-9,9,-3,3$
so that $\bf{ B} = \begin{pmatrix} 3\sqrt{\frac{3}{2}} & 3\sqrt{\frac{5}{2}}\\ 0 & 3\sqrt{6} \end{pmatrix}$