Suppose $1\le p<q\le\infty.$ We will prove that $\ell^{p}\subseteq \ell^{q}$ by proving that $\|a\|_{q}\le\|a\|_{p}$ for any $a\in \ell^{p}.$
Define $b_n := \frac{a_n}{\|a\|_{p}}$ and observe that $\vert b_n \vert \leq 1$ for all $n \in \mathbb N$. Notice the following chain of equivalent statements:
\begin{align*}
\vert b_n \vert^{q} &\leq \vert b_n \vert^{p} \\
\sum_{n = 1}^\infty \vert b_n \vert^{q} & \leq \sum_{n = 1}^\infty \vert b_n \vert^{p} \\
\sum_{n = 1}^\infty \bigg \vert \frac{a_n}{\|a\|_{p}} \bigg \vert^{q} & \leq \sum_{n = 1}^\infty \bigg \vert \frac{a_n}{\|a\|_{p}} \bigg \vert^{p} \\
\Bigg(\sum_{n = 1}^\infty \bigg \vert \frac{a_n}{\|a\|_{p}} \bigg \vert^{q}\Bigg)^{1/p} & \leq \Bigg( \sum_{n = 1}^\infty \bigg \vert \frac{a_n}{\|a\|_{p}} \bigg \vert^{p} \Bigg)^{1/p}\\
\frac{1}{\big(\|a\|_{p}\big)^{q/p}} \Bigg(\sum_{n = 1}^\infty \vert a_n \vert^{q} \Bigg)^{1/p} & \leq 1\\
\Bigg(\sum_{n = 1}^\infty \vert a_n \vert^{q} \Bigg)^{1/p} & \leq \big(\|a\|_{p}\big)^{q/p}\\
\sum_{n = 1}^\infty \vert a_n \vert^{q} & \leq \big(\|a\|_{p}\big)^{q}\\
\Bigg(\sum_{n = 1}^\infty \vert a_n \vert^{q} \Bigg)^{1/q} & \leq \|a\|_{p}\\
\|a\|_{q}& \leq \|a\|_{p}.
\end{align*}
You didn't ask for the case when $q = \infty$, but it holds there too. Notice that $\vert a_n \vert \leq \bigg(\sum_{n = 1}^\infty \vert a_n \vert^{p} \bigg)^{1/p}$ for all $n \in \mathbb N$, and thus $$\|a_n\|_{q} = \|a_n\|_\infty = \sup_{n \in \mathbb N} \vert a_n \vert \leq \bigg(\sum_{n = 1}^\infty \vert a_n \vert^{p} \bigg)^{1/p} = \|a_n\|_{p}.$$
From $l^p\subset c_o$, for $\epsilon =1$, there is $k_o\in N$ such that for all $k\geq k_0$, $|x_k|<1$.
It follows that $|x_k|^q\leq |x_k|^p$ because $1\leq p<q$. $\rightarrow sum^{\infty}{k=k_0} |x_k|^q\leq sum^{\infty}{k=k_0} |x_k|^p$
But I don't know what happens with $\sum^{k_0-1}_{k=1} |x_k|^q$ and how to show that it converges.
– user23709 May 29 '13 at 16:05