1

Show that $$\sum_{n=3}^\infty \frac1{n \log n(\log \log n)^p}$$ converges if and only if $ p > 1$.

I know the hint for this: we have to use integral test so we know that the sum of $f(n)$ converges $\iff$ integral of $f(x)$ converges.

Anyone know how exactly to do this?

not all wrong
  • 16,568
  • 2
  • 37
  • 58
Risa
  • 303

2 Answers2

1

Note that $$ \int\limits_3^{+\infty}\frac{dx}{x\log x(\log\log x)^p} =\int\limits_3^{+\infty}\frac{d(\log x)}{\log x(\log\log x)^p} =\int\limits_3^{+\infty}\frac{d(\log\log x)}{(\log\log x)^p} =\frac{(\log\log x)^{-p-1}}{-p-1}\Biggl|_3^{+\infty} =\lim\limits_{x\to+\infty}\frac{(\log\log x)^{-p-1}}{-p-1}-\frac{(\log\log 3)^{-p-1}}{-p-1}=+\infty $$ Hence by integral test the series $$ \sum\limits_{n=3}^{+\infty}\frac{1}{n\log n(\log\log n)^p} $$ diverges

Norbert
  • 58,398
1

Using Cauchy condensation test,

For $p=1$,

Here $$a_n=\frac{1}{n\log n \log (\log n)}$$

By Cauchy condensation test $\sum a_n $& $\sum 2^n a_{2^n}$ converges or diverges together,

\begin{align*} \sum 2^n a_{2^n}&=\sum 2^n \frac{1}{2^n \log {2^n} \log (\log 2^n)}\\ &=\sum \frac{1}{n\log 2 \log (n \log 2)} \end{align*}

Since,

$\log 2 < 1$

$n \log 2 < n$

$\displaystyle \frac {1}{n \log 2} > \frac {1}{n}$

$\displaystyle \frac{1}{\underbrace{n \log 2}_{m} \log\underbrace{(n \log 2)}_{m}} > \frac{1}{n \log n}$

Check the behavior $\displaystyle \sum \frac{1}{m \log m} $ it is divergent for p=1,

There is one example which you have to solve,

$$\sum_{n=2}^\infty \frac{1}{n(\log n)^p} \ \ \text{if} \ \ p>0 $$

For $P>1$ converges and $P\leq 1$ diverges.

$\displaystyle \therefore \sum 2^n a_{2^n}$ is divergent

$\displaystyle \therefore \sum_{n=3}^\infty \frac{1}{n \log n \log (\log n)} $ is divergent.

I hope you can conclude behavior for $P>1$.