Using Cauchy condensation test,
For $p=1$,
Here $$a_n=\frac{1}{n\log n \log (\log n)}$$
By Cauchy condensation test $\sum a_n $& $\sum 2^n a_{2^n}$ converges or diverges together,
\begin{align*}
\sum 2^n a_{2^n}&=\sum 2^n \frac{1}{2^n \log {2^n} \log (\log 2^n)}\\
&=\sum \frac{1}{n\log 2 \log (n \log 2)}
\end{align*}
Since,
$\log 2 < 1$
$n \log 2 < n$
$\displaystyle \frac {1}{n \log 2} > \frac {1}{n}$
$\displaystyle \frac{1}{\underbrace{n \log 2}_{m} \log\underbrace{(n \log 2)}_{m}} > \frac{1}{n \log n}$
Check the behavior $\displaystyle \sum \frac{1}{m \log m} $ it is divergent for p=1,
There is one example which you have to solve,
$$\sum_{n=2}^\infty \frac{1}{n(\log n)^p} \ \ \text{if} \ \ p>0 $$
For $P>1$ converges and $P\leq 1$ diverges.
$\displaystyle \therefore \sum 2^n a_{2^n}$ is divergent
$\displaystyle \therefore \sum_{n=3}^\infty \frac{1}{n \log n \log (\log n)} $ is divergent.
I hope you can conclude behavior for $P>1$.