Given $n$ real numbers $a_{1}, a_{2}\cdots a_{n}$ so that $$a_{1}\geq a_{2}\geq\cdots\geq a_{n}, a_{1}+ a_{2}+ \cdots+ a_{n}= 300, a_{1}^{2}+ a_{2}^{2}+ \cdots+ a_{n}^{2}> 10000$$ With $n> 3,$ prove that $a_{1}+ a_{2}+ a_{3}\geq 100.$
I wanna create a contractdiction. So we may assume that $$a_{1}+ a_{2}+ a_{3}< 100\Rightarrow\sum_{k= 1}^{n}a_{k}^{2}\leq a_{1}\left ( a_{1}+ a_{2}+ a_{3} \right )+ a_{3}\sum_{k= 4}^{n}a_{k}= a_{1}\left ( a_{1}+ a_{2}+ a_{3} \right )+$$ $$+ a_{3}\left ( 300- a_{1}- a_{2}- a_{3} \right )\leq 100\left ( a_{1}- a_{3} \right )+ 300a_{3}\leq 100\left ( a_{1}+ a_{2}+ a_{3} \right )= 10000$$ I tried to solve this inequality by using Karamata but unsuccessfully, who can help me with a way ?? Thanks a real lot !