Define a function sequence $\left \{ f_{n} \right \}_{n= 0}^{\infty}$ on $\left ( 0, \infty \right )$ as $$f_{0}\left ( x \right )= \ln x,\quad f_{n+ 1}\left ( x \right )= \int_{0}^{x}f_{n}\left ( t \right ){\rm d}t\quad\left ( n= 0, 1, 2\cdots \right )$$ Prove the limiting equation: $$\lim_{x\rightarrow\infty}e^{-x}\sum_{n= 0}^{\infty}f_{n}\left ( x \right )= -\gamma$$ For your information$,\quad\gamma$ is Euler's constant defined $$\gamma:=\lim\left ( \sum_{k= 1}^{n}\frac{1}{k}- \ln n \right )$$ This problem belongs to my friend@twelve_sakuya, I haven't touched Euler's constant of course we have no approaches from me. But I had done a similar work. Maybe, there is a relationship between both problems, I need to the help. Here we go.
Given a function $f\left ( x \right )$ continuous on the real interval. Prove that $$\lim_{x\rightarrow\infty}\left ( e^{-x}\int_{-x}^{x}e^{t}f\left ( t \right ){\rm d}t \right )= 0$$ Source: Hungarian Math Contest Revision
Integral's limit, which I think that required us to divide and evaluate the integral function. By using the integral form of Cauchy-Schwarz inequality, we have $$\left | e^{-x}\int_{-x}^{x}e^{t}f\left ( t \right ){\rm d}t \right |\leq e^{-x}\left | \int_{-x}^{-\frac{x}{2}}e^{t}f\left ( t \right ){\rm d}t \right |+ e^{-x}\left | \int_{-\frac{x}{2}}^{\frac{x}{2}}e^{t}f\left ( t \right ){\rm d}t \right |+ e^{-x}\left | \int_{\frac{x}{2}}^{x}e^{t}f\left ( t \right ){\rm d}t \right |\leq$$ $$\leq e^{-x}\left ( \int_{-x}^{-\frac{x}{2}}e^{2t}{\rm d}t \right )^{\frac{1}{2}}\left ( \int_{-x}^{-\frac{x}{2}}f^{2}\left ( t \right ){\rm d}t \right )^{\frac{1}{2}}+ e^{-x}\left ( \int_{-\frac{x}{2}}^{\frac{x}{2}}e^{2t}{\rm d}t \right )^{\frac{1}{2}}\left ( \int_{-\frac{x}{2}}^{\frac{x}{2}}f^{2}\left ( t \right ){\rm d}t \right )^{\frac{1}{2}}+$$ $$+ e^{-x}\left ( \int_{\frac{x}{2}}^{x}e^{2t}{\rm d}t \right )^{\frac{1}{2}}\left ( \int_{\frac{x}{2}}^{x}f^{2}\left ( t \right ){\rm d}t \right )^{\frac{1}{2}}\leq e^{-\frac{3}{2}x}\left ( \int_{-\infty}^{-\frac{x}{2}}f^{2}\left ( t \right ) \right )^{\frac{1}{2}}+ e^{-\frac{x}{2}}\left ( \int_{-\infty}^{\infty}f^{2}\left ( t \right ) \right )^{\frac{1}{2}}+$$ $$+ \left ( \int_{\frac{x}{2}}^{\infty}f^{2}\left ( t \right ) \right )^{\frac{1}{2}}\underset{x\rightarrow\infty}{\rightarrow}0\therefore\left | \int_{-\infty}^{\infty}f^{2}\left ( x \right ){\rm d}x \right |< \infty\Rightarrow\lim_{x\rightarrow\infty}\left ( e^{-x}\int_{-x}^{x}e^{t}f\left ( t \right ){\rm d}t \right )= 0$$