4

Given a natural number $n$ and a real number $d_{n},$ for the least $d_{n+1}$ so that $$32d_{n}^{5}\!\left ( d_{n}+ 2 \right )\!= 2\left ( 5d_{n}^{4}+ 8d_{n}^{2}+ 8d_{n}+ 8 \right )d_{n+ 1}^{3}+ 4d_{n}\left ( 5d_{n}^{4}+ 11d_{n}^{3}- 2d_{n}^{2}+ 14d_{n}- 4 \right )d_{n+ 1}^{2}+ 4d_{n}^{3}\left ( 5d_{n}^{3}+ 2d_{n}^{2}+ 24d_{n}- 16 \right )d_{n+ 1}.$$ Prove that if $d_{2}= \frac{8}{5},$ then $\left \{ d_{n} \right \}_{n> 1}$ is rational and $$\lim\frac{n^{2}}{\ln n}\left ( \frac{2}{n}- d_{n} \right )= 2$$ Source: AoPS/@Ji_Chen (still unsolved)

I'm into a related problem. I also see $d_{2}= \!\frac{8}{5}.$ Maybe they are same so I used discriminant to define the concrete value for $d_{n}$ but unsuccessfully, I need to the help.

1 Answers1

1

Define a sequence $\{x_i\}_i$ so that $x_1=1/2$ and $$x_{n+1}=\frac{x_n^2+1}{2}.$$ We claim that $$d_n=\frac{1-x_{n-1}}{x_{n-1}x_n}.$$ We show this by induction on $n$, with the base case $n=2$ true since $x_2=5/8$. For the inductive step, we show that, if $d=\frac{2(1-x)}{x(x^2+1)}$, then $$\frac{}{}$$ is the largest root of the given polynomial. This is via the factorization of $$2(5d^4+8d^2+8d+8)y^3+4d(5d^4+11d^3-2d^2+14d-4)y^2+4d^3(5d^3+2d^2+24d-16)y-32d^5(d+2)$$ with $d=\frac{2(1-x)}{x(x^2+1)}$ as $$\frac{16}{x^6(x^2+1)^6}\big(y(x^2+1)(x^4+2x^2+5)-8(1-x^2)\big)\big(a(x)y^2+b(x)y+c(x)),$$ times $a(x)y^2+b(x)y+c(x)$, where \begin{align*} a(x)&=x^2 (x^2 + 1) (x^4 - 2 x^3 + 4 x^2 - 4 x + 2) (x^4 + 2 x^3 - 2 x + 1)\\ b(x)&=2 (x - 1)^2 x (x^7 + x^6 + 6 x^5 - 5 x^4 + 9 x^3 - 2 x^2 - 6 x + 4)\\ c(x)&=16(x-1)^4(x^2-x+1). \end{align*} It is not hard to see (for example, by graphing them) that $a(x),b(x),c(x)\geq 0$ as long as $x>0$; since $0<x_n<1$ for all $n$, this gives that $$\frac{8(1-x^2)}{x^6+3x^4+7x^2+5}$$ is the largest root of the polynomial, so $$d_{n+1}=\frac{8(1-x_{n-1}^2)}{(x_{n-1}^2+1)(x_{n-1}^4+2x_{n-1}^2+5)}=\frac{16(1-x_n)}{2x_n(4x_n^2+4)}=\frac{1-x_n}{x_nx_{n+1}},$$ as desired.

This shows that $d_n$ is rational; we only need to show that $$\lim_{n\to\infty}\frac{n^2}{\ln n}\left(\frac2n-d_n\right)=2.$$ Define $$t_n=\left(x_{n-1}-\left(1-\frac 2n\right)\right)n^2.$$ Then \begin{align*} t_{n+1}&=1-n^2+(n+1)^2x_n\\ &=1-n^2+(n+1)^2\left(\frac{\left(1-\frac2n+\frac{t_n}{n^2}\right)^2+1}{2}\right)\\ &=1-n^2+(n+1)^2\left(1-\frac2n+\frac2{n^2}+\frac{t_n}{n^2}-\frac{2t_n}{n^3}+\frac{t_n^2}{2n^4}\right)\\ &=\frac2n+\frac2{n^2}+t_n\left(1-\frac2{n^3}-\frac3{n^2}\right)+\frac{t_n^2}{2n^4}. \end{align*} So, we may show by induction on $n$ that $\{t_n-2H_{n-1}\}_n$ is bounded, where $$H_k=\sum_{i=1}^k\frac1i$$ is the $k$th harmonic number, and so $$x_{n-1}=1-\frac2n+\frac{2\ln n}{n^2}+O\left(\frac1{n^2}\right),$$ since $H_n\sim \ln n$. Now \begin{align*} \lim_{n\to\infty}\frac{n^2}{\ln n}\left(\frac2n-d_n\right) &=\lim_{n\to\infty}\frac{n^2}{\ln n}\left(\frac2n-\frac{1-x_{n-1}}{x_{n-1}x_n}\right)\\ &=\lim_{n\to\infty}\frac{n^2}{\ln n}\left(\frac2n-\frac{\frac2n-\frac{2\ln n}{n^2}+O\left(\frac1{n^2}\right)}{x_{n-1}x_n}\right)\\ &=\lim_{n\to\infty}\frac{n^2}{x_{n-1}x_n\ln n}\left(\frac{2x_{n-1}x_n}{n}-\frac2n+\frac{2\ln n}{n^2}+O\left(\frac1{n^2}\right)\right)\\ &=\lim_{n\to\infty}\frac{2n(x_{n-1}x_n-1)}{x_{n-1}x_n\ln n}+\frac{2}{x_{n-1}x_n}+O\left(\frac{1}{x_{n-1}x_n\ln n}\right)\\ &=2-2\lim_{n\to\infty}\frac{n(1-x_{n-1}x_n)}{\ln n}. \end{align*} Since $$1-x_{n-1}x_n=1-x_{n-1}+x_{n-1}(1-x_n)=O\left(\frac1n\right),$$ this limit is just $2$, as desired.