Let us use the notation $U_j^n$ for approximations of $U(x_j, t_n)$ with $x_j = j\Delta x$ and $t_n = n\Delta t$. Using Taylor series, one shows that for smooth solutions
\begin{aligned}
\frac{U_j^{n+1} - \frac12( U_{j+1}^n + U_{j-1}^n )}{\Delta t} &= (U_t)_j^n + \frac{\Delta t}{2}(U_{tt})_j^n - \frac{\Delta x^2}{2\Delta t} (U_{xx})_j^n + O(\Delta t^2, \Delta x^2)
\\
\frac{U_{j+1}^{n} - U_{j-1}^n}{2\Delta x} &= (U_x)_j^n + O(\Delta x^2) .
\end{aligned}
Now let us compute the difference between the PDE and its approximation deduced from the Lax-Friedrichs method. Up to higher-order terms, the scheme produces
$$
\begin{aligned}
(U_t + v_x U_x)_j^n
& - \frac{U_j^{n+1} - \frac12( U_{j+1}^n + U_{j-1}^n )}{\Delta t} - v_x \frac{U_{j+1}^{n} - U_{j-1}^n}{2\Delta x} \\
&= \underbrace{-\frac{\Delta t}{2}(U_{tt})_j^n + \frac{\Delta x^2}{2\Delta t} (U_{xx})_j^n}_\text{l.e.t.}
\end{aligned} $$
Then, the transport equation yields the relationships $U_{tx} = -v_x U_{xx}$ and $U_{tt} = -v_x U_{xt}$ between temporal and spatial derivatives,
which lead to $U_{tt} = v_x^2 U_{xx}$. Finally,
$$
\text{l.e.t} = \frac{1}{2}\left(\frac{\Delta x^2}{\Delta t} - \Delta t\, v_x^2\right) (U_{xx})_j^n \, ,
$$
where $j$ and $n$ can be removed.