Let $f$ be a multiplicative function, i.e. for all coprime $a,b\in\mathbb{N}\quad f(ab)=f(a)f(b)$.
Consider: $$(f*f)(n)=\sum_{d\vert n}f(d)f\left(\frac{n}{d}\right),\quad\text{where * is Dirichlet convolution.}$$ Claim: $$(f*f)(n)=f(n)\sigma_0(n)\quad\text{where $\sigma_0(n)$ is the number of divisors function}.$$ Proof: $$\sum_{d\vert n}f(d)f\left(\frac{n}{d}\right)=\underbrace{\sum_{d\vert n}f(n)}_\text{by multiplicativity}=f(n)\sum_{d\vert n}1=f(n)\sigma_0(n).\square$$
I would just like to make sure I haven't made any silly mistakes.