I'm having some trouble with the following exercice:
Using only the properties of the determinant, prove that: $$\det \left( \begin{matrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{matrix} \right) = (d − a)(d − c)(d − b)(c − b)(c − a)(b − a)$$
I know how to solve this using Laplace formula but I don't see how I can use the properties of the determinant to do this. I tried to put the matrix in it's reduced form but I'm having some trouble doing it. How can I solve this problem?
Edit: this is the list of properties that I'm allowed to use:
- If a matrix $A$ has two identical lines then $\det (A) = 0$
- $\det(I_n) = 1$
- Let:
$$A =\left( \begin{matrix} a_{11} & a_{12} & ... & a_{1n} \\ \vdots & \vdots & & \vdots \\ \alpha a'_{i1} + \beta a''_{i1} & \alpha a'_{i2} + \beta a''_{i2} & ... &\alpha a'_{in} + \beta a''_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & ... & a_{nn} \end{matrix} \right)$$
If $$A' = \left( \begin{matrix} a_{11} & a_{12} & ... & a_{1n} \\ \vdots & \vdots & & \vdots \\ a'_{i1}& a'_{i2}& ... & a'_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & ... & a_{nn} \end{matrix} \right)$$
and $$A'' = \left( \begin{matrix} a_{11} & a_{12} & ... & a_{1n} \\ \vdots & \vdots & & \vdots \\ a''_{i1}& a''_{i2}& ... & a''_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & ... & a_{nn} \end{matrix} \right)$$
Then $\det(A) = \alpha \det(A') + \beta \det(A'')$
These are the properties that I'm allowed to use.