We have
$F(x)=\begin{pmatrix}f_1\\...\\f_m\end{pmatrix}$ and $\nabla F=\begin{pmatrix}\frac d {dx_1}f_1&...&\frac d {dx_1}f_m\\...\\\frac d {dx_n}f_1&...&\frac d {dx_n}f_m\end{pmatrix}$
So
$$\nabla F(x)F(x)=\begin{pmatrix}\sum_{i=1}^m f_i\frac d {dx_1}f_i\\...\\\sum_{i=1}^m f_i\frac d {dx_n}f_i\end{pmatrix}$$
The part of the chain rule that corresponds to the second part is
$$\nabla F(x)F(x)=\begin{pmatrix}\sum_{i=1}^m f_i\underbrace{\frac d {dx_1}f_i}\\...\\\sum_{i=1}^m f_i\underbrace{\frac d {dx_n}f_i}\end{pmatrix}$$
Apply the chain rule to get
$$\nabla\left(\nabla F(x)\right)F(x)=\begin{pmatrix}\sum_{i=1}^m f_i\frac {d^2} {dx_1^2}f_i&...&\sum_{i=1}^m f_i\frac {d^2} {dx_1dx_n}f_i\\...\\\sum_{i=1}^m f_i\frac {d^2} {dx_ndx_1}f_i&...&\sum_{i=1}^m f_i\frac {d^2} {dx_n^2}f_i\end{pmatrix}$$
Does this match the book appendix's $\sum_{i=1}^m f_i(x)\nabla ^2 f_i(x)$?
See $\nabla f_i(x)=\begin{pmatrix}\frac d {dx_1}f_i(x)\\...\\\frac d {dx_n}f_i(x)\end{pmatrix}$ and $\nabla^2 f_i(x)=\begin{pmatrix}\frac {d^2} {dx_1}f_i(x)&...&\frac {d^2} {dx_1dx_n}f_i(x)\\...\\\frac {d^2} {dx_ndx_1}f_i(x)&...&\frac {d^2} {dx_n^2}f_i(x)\end{pmatrix}$
so after you multiply $\nabla^2 f_i(x)$ by $f_i(x)$ and take the sum, yes, it is correct: $\nabla\left(\nabla F(x)\right)F(x)=\sum_{i=1}^m f_i(x)\nabla ^2 f_i(x)$