1

I have a question about the following problem: show that $$S=\{ A \in GL_n(K) \mid AJA^t = J \}$$ is a subgroup of $GL_n(K)$, where $J\in K^{n\times n}$.

I have shown that the identity element $e$ is part of $S$, but I don't know to prove the second criteria for a subgroup. Thanks in advance!

Shaun
  • 47,747
PDP
  • 23

2 Answers2

2

Assume that $A,B \in S$. This means $A,B \in GL_n(K)$ and $AJA^t = BJB^t = J$. We wish to show $AB \in S$. We have $AB \in GL_n(K)$ and $$(AB)J(AB)^t = (AB)J(B^tA^t) = A(BJB^t)A^t = AJA^t = J$$ so indeed $AB \in S$.

mechanodroid
  • 47,570
1

I will use the one-step subgroup test.

Clearly $\varnothing\neq S\subseteq GL_n(K)$.

Let $A,B\in S.$ Then $AJA^t=J=BJB^t$. Observe that $$\begin{align} B^{-1}J(B^t)^{-1}&=B^{-1}BJB^t(B^t)^{-1}\\ &=J. \end{align}$$

We aim to show that $AB^{-1}\in S$. Indeed,

$$\begin{align} (AB^{-1})J(AB^{-1})^t&=(AB^{-1})J((B^{-1})^tA^t)\\ &=A(B^{-1}J(B^t)^{-1})A^t\tag{1}\\ &=AJA^t\\ &=J. \end{align}$$

Hence $S\le GL_n(K)$.


$(1)$: See here.

Shaun
  • 47,747