In "Nonsmooth Optimization" by Mäkela and Neittaanmäki the definition of the generalized directional derivative is given as follows:
Definition 3.1.1 (Clarke). Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be locally Lipschitz at a point $x \in \mathrm{R}^{n} .$ The generalized directional derivative of $f$ at $x$ in the direction of $v \in \mathrm{R}^{n}$ is defined by $$ f^{\circ}(x ; v)=\limsup _{y \rightarrow x, t \rightarrow 0} \frac{f(y+t v)-f(y)}{t} \, . $$
Then in Theorem 3.1.2. on page 30 they proof that $f^{\circ}(x ; v)$ is upper semicontinuous as a function of $(x ; v)$.
The proof starts with:
Let $\left(x_{i}\right),\left(v_{i}\right) \subset \mathbf{R}^{n}$ be sequences such that $x_{i} \rightarrow x$ and $v_{i} \rightarrow v$. By definition of upper limit, there exist sequences $\left(y_{i}\right) \subset \mathbf{R}^{n}$ and $\left(t_{i}\right) \subset \mathrm{R}$ such that $t_{i}>0$ \begin{equation} \left\|y_{i}-x_{i}\right\|+t_{i}< \frac{1}{i} \end{equation} and \begin{equation} f^{\circ}\left(x_{i} ; v_{i}\right) - \frac{1}{i}\leq \frac{f\left(y_{i}+t_{i} v_{i}\right)-f\left(y_{i}\right)}{t_{i}} \end{equation} for all $i \in \mathrm{N}$.
Why do such sequences $\left(y_{i}\right) \subset \mathbf{R}^{n}$ and $\left(t_{i}\right) \subset \mathrm{R}$ exist?
I mean by the above definition of the generalized directional derivative we have
\begin{align} f^{\circ}\left(x_{i} ; v_{i}\right) - \frac{1}{i} &= \limsup _{y \rightarrow x_{i}, t \rightarrow 0} \frac{f(y+t v_{i})-f(y)}{t} - \frac{1}{i}\\ &\leq \frac{f\left(y_{i}+t_{i} v_{i}\right)-f\left(y_{i}\right)}{t_{i}} \\ \end{align}
I would appreciate a lot if someone could explain to me what the thoughts behind this are.