Jensen's inequality
Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $X$ be a random variable. Then $$\phi(E[X]) \leq E[\phi(X)],$$ if $E[X]$ and $E[\phi(X)]$ exist.
Exercise Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be a strictly convex function, that is, $$\phi(x) \geq ax+ b \forall x \in \mathbb{R} (1) $$
Then if $$\phi(E[X]) = E[\phi(X)]$$
$\Rightarrow X = c$ almost everywhere, where $c$ is c a constant.
Question 1
I have found that a function $f:X \rightarrow \mathbb{R}$ is called strictly convex iff $$f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2) \forall t \in (0,1), \forall x_1,x_2 \in X$$
Why does the exercise mention $(1)$? Is it an equivalent definition?
Question 2
How should I approach this exercise?