Abstract: In this article, the norm in $L^p(\Omega)$ space could be descriped by all continuous functions in theorem 1 on $ \Omega $, where $ \Omega $ is a bounded open set in $\mathbb{R} ^n$, $1<p<\infty$. This could be regard as the converse problem for H{"o}lder inequality.
Theorem 1. $ \Omega $ is a bounded open set in $\mathbb{R} ^n$, $1<q<\infty$, $f$ is Lebesgue measurable on $ \Omega $. If there exist a $M>0$ s.t.
\begin{equation}
|\int_{\Omega} fgdx|\leq M(\int_{\Omega} |g|^qdx)^\frac{1}{q}
\end{equation}
then, $f\in L^p(\Omega)$, $||f||_p \leq M$, where $\frac{1}{p}+\frac{1}{q}=1$ and $||\;||_p$ denote the norm in $L^p(\Omega)$
Proof:
Claim 1. if the continuous funtion could be sbustituted by all integrable simple functions in (1), then the results hold . We can get it from reference 1.
Claim 2. $|x^p-y^p|\leq p|x-y|(x^{p-1}+y^{p-1})$ when $1<p<\infty$, Real and Complex Analysis Rudin's book in chapter 3, problem 24.
We only need to show
\begin{equation}
|\int_{\Omega} fhdx|\leq M(\int_{\Omega} |h|^qdx)^\frac{1}{q}
\end{equation}
for all integrable simple function $h$ by claim 1. Thus we only need to prove the inequality (2).
case 1. $\int_{\Omega} |f|=0$, (2) is trivial.
case 2. $\int_{\Omega} |f|\neq0 $
for any $\epsilon >0$, we choose a bounded continuous function $g$.(Choose a real number $G$ s.t. $h,g$ are bounded by $G$) s.t.$\int_{\Omega}|h-g|^qdx<2\epsilon$
Claim 3. $ \int _{\Omega}|f(h-g)|dx<\epsilon$
We have $\int_{\Omega}|h^p-g^p|dx<4p\epsilon G^(p-1)$ by Claim 2.
Now we have
$$|\int_{\Omega} fhdx|\leq M(\epsilon)(\int_{\Omega} |h|^qdx)^\frac{1}{q} $$
and $M(\epsilon)$ is bigger but close enough to $M$ by claim 1.,2.and 3.
Let $\epsilon $ converges to $0$. We have proved the inequality (2) and complete the proof.
Proof of claim 1.
(I translate the reference into English):
We choose compact supported nonnegative simple measurables function sequence ${\phi_k(x)}$ ($0\leq\phi_1(x)\leq\phi_2\leq...\leq \infty$) s.t. $$ \lim_{k\rightarrow\infty}\phi_k(x)=|f|^p,x\in \Omega$$
Let $\psi_k(x)=(\phi_k(x))^\frac{1}{q} \text{sign} f(x)$,
$$||\psi_k||_q=(\int_{\Omega}\psi_k(x)dx)^{\frac{1}{q}}$$
$$0\leq\psi_k(x)=(\psi_k(x))^{\frac{1}{q}}(\psi_k(x))^{\frac{1}{p}}\leq(\psi_k(x))^{\frac{1}{q}}|f(x)|=\psi_k(x)f(x)$$
So, we have
$$\int_{\Omega}\phi_k(x)dx\leq\int_{\Omega}\psi_k(x)f(x)\leq M||\psi_k(x)||_q$$.
Thus
$$\int_{\Omega}\phi_k(x)dx\leq M^p $$.
After taking the limit, we have
$$\int_{\Omega}|f(x)|^pdx\leq M^p $$.
Proof of claim 2.
$f$ is integrable, then there exist $\delta>0$ s.t. $\int_{E} |f|<\frac{1}{2G}\epsilon$
Then there exist closed $E_{\delta}\subset \Omega$ and $m(\Omega \backslash E_{\delta})<\delta$. The integral on $E_{\delta})$ is dominated by H{"o}lider inequality.