I'm interested in a general formula for
$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big].$$
In particular, Fàa di Bruno's formula gives
$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big]=\sum_{k=1}^n f^{(k)}\left(\sqrt{x+1}\right)B_{n,k}\big(g'(x),g''(x),\dots,g^{(n-k+1)}(x)\big),$$
where $g(x)=\sqrt{x+1}$ and $B_{n,k}$ denote Bell polynomials.
I suspect we can do better than this, using the identities
$$\frac{d^k}{dx^k}\Big[\sqrt{x+1}\Big]=\left(\frac{1}{2}\right)^\underline{k}x^{1/2-k}=-\frac{(2k-3)!!}{(-2)^k}x^{1/2-k}=\frac{\sqrt{\pi}}{2\Gamma(3/2-k)}x^{1/2-k}.$$
In particular, every term in $B_{n,k}$ for fixed $n$ and $k$ will be some numerical factor times $(x+1)^{k/2-n}$ (see notes below), so the result is always of the form
$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big] =\sum_{k=1}^n a_{n,k} \frac{f^{(k)}\left(\sqrt{x+1}\right)}{(x+1)^{n-k/2}}$$
for some constants $a_{n,k}.$ Is there an explicit expression for the $a_{n,k}$ above? For example, it seems likely that there is some expression using Stirling numbers, factorials, binomial coefficients, etc., given the combinatorial nature of the problem.
Current progress:
Using the first identity above for derivatives of $\sqrt{x+1}$ [where $(\cdot)^\underline{k}$ denotes the $k$th falling factorial], we have
$$B_{n,k}\big(g'(x),g''(x),\dots,g^{(n-k+1)}(x)\big) =B_{n,k}\left[\left(\frac{1}{2}\right)^\underline{1}x^{1/2-1},\left(\frac{1}{2}\right)^\underline{2}x^{1/2-2},\dots,\left(\frac{1}{2}\right)^\underline{n-k+1}x^{1/2-(n-k+1)}\right].$$
The definition of the Bell polynomials guarantees that the power of $x$ in every term of $B_{n,k}(\cdots)$ comes out to $x^{k/2-n}$, with pre-factor given by
$$a_{n,k}=B_{n,k}\left[\left(\frac{1}{2}\right)^\underline{1},\left(\frac{1}{2}\right)^\underline{2},\dots,\left(\frac{1}{2}\right)^\underline{n-k+1}\right],$$
so the remaining task is to simplify the above expression, if possible.