Let $k$ be a field and $\phi: k^*\rightarrow X$ be a morphism to a variety $X$.
My questions are:
1.When $X$ quasiprojective, why $\phi$ can be extended to $\bar\phi:\mathbb P^1\rightarrow \overline X$ where $\overline X$ is the closure of $X$ in $\mathbb P^n$?
2.Why $\overline{\phi(k^*)}-\phi(k^*)$ must be equal to $lim_{x\rightarrow 0}\phi(x)$ or $lim_{x\rightarrow\infty}\phi(x)$? (I'm also not really sure where do we take the closure for $\phi(k^*)$. in $X$ or in $\mathbb P^n$?)
3.Why $\phi$ is proper if and only if these limits do not exist in $X$?

