The polar of a convex body $C$ is defined as:
For a convex body $C$, its polar $C^*$ is given by $$C^* = \{x\in\mathbb{R}^n: \langle x,c\rangle \le 1, \forall c\in C\}$$
If I start with an orthonormal basis $(e_i)_1^n$, positive constants $(\alpha_j)_1^n > 0$ and the ellipsoid $$\varepsilon = \left\{x\in\mathbb{R}^n: \sum\limits_{j=1}^n \frac{\langle x,e_j\rangle^2}{\alpha_j^2} \leq 1 \right\}$$
how do I show that its polar ellipsoid is $$\varepsilon^* = S_1 = \left\{y\in\mathbb{R}^n: \sum_{j=1}^n \alpha_j^2 \langle y,e_j\rangle^2 \le 1\right\}$$
Using the definition, I saw that $$\varepsilon^* = S_2 = \{z\in\mathbb{R}^n: \langle z,x\rangle \le 1, \text{for all }x\in \varepsilon\}$$ Also, $\langle z,x\rangle = \sum_i\langle z,e_i\rangle\langle x,e_i\rangle$ I used Cauchy Schwartz to do one side of the proof, i.e. $S_1\subseteq S_2$: $$\left(\sum_i\langle y,e_i\rangle\langle x,e_i\rangle\right)^2 \leq \left(\sum_i\alpha_i^2 \langle y,e_i\rangle^2\right)\left(\sum_i \frac{\langle x,e_i\rangle^2}{\alpha_i^2}\right) \le 1 \implies \langle y,x\rangle \le 1$$
I need help with the other direction, i.e. $S_2\subseteq S_1$. Which other inequality might help?