1

I've been searching numerically, and whenever a positive definite binary quadratic form can primitively represent an integer $n>1$ and $n^3$, it turns out to be equivalent to the identity form in that class group.

Is there some elementary way to see that this is only possible for identity forms?


Here is what initially gave me hope that it could be possible with other forms.

For any binary quadratic form $A x^2 + B xy + C y^2$, if it can represent integers $r$, $s$, $t$ then it can also represent $rst$.

This can be seen as follows:

  1. For any form with coefficients $(A,B,C)$, in the class group its inverse is $(A,-B,C)$.

  2. Both a form and its inverse can represent the same numbers (if $(x,y)$ with the former, use $(x,-y)$ with the later).

  3. If a form can represent $r$ with $(x_1,y_1)$, and $s$ with $(x_2,y_2)$ then the identity form can represent $rs$ with some integers $(u,v)$ due to form composition:

$$ \begin{aligned} rs &= (A x_1^2 + B x_1 y_1 + C y_1^2)(A x_2^2 + B x_2 y_2 + C y_2^2) \\ &= (A x_1^2 + B x_1 y_1 + C y_1^2)(A x_2^2 - B x_2 (-y_2) + C (-y_2)^2) \\ &= I(u,v) \\ \end{aligned} $$

  1. Futhermore, if the form can represent $t$ with $(x_3,y_3)$, then it can represent $rst$ by some integers $(x_4,y_4)$ due to form composition.

$$rst = I(u,v)(A x_3^2 + B x_3 y_3 + C y_3^2) = (A x_4^2 + B x_4 y_4 + C y_4^2)$$

It is definitely possible to primitively represent cubes, for example

a) 2 x^2 - xy + 6 y^2 = 3^3  with x=3,y=-1
b) 2 x^2 - xy + 6 y^2 = 8^3  with x=2,y=-9

But in example 'a', it is not possible for that form to represent 3. While in example 'b', the form can represent 8, but not primitively (x=2,y=0).

This seems to be the case for any form not equivalent to an identity form.

While for an identity form, I've been able to find a lot of examples that work.

    x^2 + xy + 12 y^2 = 18     with x=2, y=1, gcd(x,y)=1
    x^2 + xy + 12 y^2 = 18^3   with x=-76, y=7, gcd(x,y)=1
x^2 + xy + 12 y^2 = 118    with x=2, y=3, gcd(x,y)=1
x^2 + xy + 12 y^2 = 118^3  with x=964, y=207, gcd(x,y)=1

x^2 + xy + 12 y^2 = 63     with x=3, y=2, gcd(x,y)=1
x^2 + xy + 12 y^2 = 63^3   with x=-501, y=2, gcd(x,y)=1

Can one prove that if a form can primitively represent $n$ and $n^3$, that is must be equivalent to the identity form?


UPDATE:

A related question On products of ternary quadratic forms $\prod_{i=1}^3 (ax_i^2+by_i^2+cz_i^2) = ax_0^2+by_0^2+cz_0^2$ shows a possible solution for any form with B=0 (all that is left is to analyze if the result is a primitive representation). Such forms are in the same equivalence class as its inverse in the class group, and are called "ambiguous forms".

Below Will Jagy gave an explicit solution for an ambiguous form which is not equivalent to the identity form, showing that the result can be a primitive representation.

The connection to what I tried is that the identity is always an ambiguous form. So that likely refines the question to:

If a form can primitively represents $n$ and $n^3$, is the form necessarily an ambiguous form?

4 Answers4

2

As Will Jagy said in his answer, it is simplest to consider the case that $n$ is a prime $p$ not dividing the discriminant. Then if $p$ is represented by some form of the given discriminant, this form is unique up to equivalence, and each power $p^k$ is also represented by a unique form up to equivalence. In terms of the class group, if the form $Q$ represents $p$ then the forms representing $p^k$ are precisely $Q^k$ and $Q^{-k}$. (A form and its inverse in the class group always represent exactly the same numbers. Throughout this answer I am using the term "represent" to mean "primitively represent".)

Thus if $Q$ represents both $p$ and $p^k$ then we must have $Q^k=Q$ or $Q^k=Q^{-1}$ in the class group, or in other words either $Q^{k-1}$ or $Q^{k+1}$ is the identity element in the class group. Taking $k=3$ as in the question, we see that $p$ and $p^3$ are represented by the same element of the class group exactly when this element has order dividing $4$.

There are plenty of examples. The simplest might be discriminant $-15$ with class group cyclic of order $2$ generated by the form $Q(x,y)=2x^2+xy+2y^2$. The primes not dividing the discriminant that are represented by $Q$ are the primes congruent to $2$ or $8$ mod $15$. In particular $Q(1,0)=2$ and $Q(-1,2)=2^3$. The next prime would be $17$, and $Q(-1,3)=17$ but I wouldn't want to solve $Q(x,y)=17^3$ by hand, though the general theory says that a solution exists.

Another example would be discriminant $-56$ as in Will Jagy's answer. Here the class group is cyclic of order $4$ generated by the form $Q(x,y)=3x^2+2xy+5y^2$. This form represents exactly the primes congruent to $3,5,13,19,27$, or $45$ mod $56$, so primes in these congruence classes give examples. The first two are $Q(1,0)=3$ and $Q(0,1)=5$ with $Q(1,2)=3^3$ and $Q(6,1)=5^3$.

Allen Hatcher

(Stackexchange thinks I am a new user here, which I am not, so it created a new account for me. If someone knows how to combine the new account with my old one, please do so or tell me how to do it.)

  • Dear Allen, I found a recipe for order four forms that are equivalent to some $\langle a, mc, ac \rangle.$ In the past few days I finally found out examples of order four forms that have no such expression. I put a list at https://mathoverflow.net/questions/384366/binary-quadratic-forms-order-four-in-the-form-class-group-not-having-desired-coe/384499#384499 – Will Jagy Feb 21 '21 at 20:14
  • I also put your request on Meta https://math.meta.stackexchange.com/questions/33188/merge-new-account-into-old – Will Jagy Feb 21 '21 at 20:20
  • Asaf answered for you to follow directions at https://math.stackexchange.com/help/merging-accounts – Will Jagy Feb 21 '21 at 20:23
1

Cox treats $x^2 + 14 y^2$ in detail for the Hilbert Class Field; the outcome is pages 113-115 in the first edition, and Theorem 5.33 says a prime $p \neq 7$ is represented by $x^2 + 14 y^2$ if $(-14|p) = 1 $ and $(x^2 + 1)^2 \equiv 8 \pmod p $ has an integral solution.

The primes represented by $3x^2 + 2xy + 5 y^2 $ all the appropriate values $\pmod{56}$ Then each $p^3$ is also primitively represented by $3x^2 + 2xy + 5 y^2 .$ On the other hand, for any primitively represented composite $n,$ we know $n^3$ will be represented but perhaps not primitively. There are numerous ways to have a number $n$ be represented; primes are restricted to some extent.

For hand calculation of composition, it helps to write the middle coefficients as $12,$ using Dirichlet's description. The product of first and last coefficients is then $30.$ The four classes become $\langle 1, 12, 50 \rangle \, , \; \; \; $ $\langle 2, 12, 25 \rangle \, , \; \; \; $ $\langle 5, 12, 10 \rangle \, , \; \; \; $ $\langle 10, 12, 5 \rangle \, . \; \; \; $ with direct calculation giving $$\langle 5, 12, 10 \rangle^2 \, , \; \; \; = \langle 25, 12, 2 \rangle \approx \langle 2, 12, 25 \rangle $$ since $\langle 2, 12, 25 \rangle$ really is ambiguous

$$ \left( 5x^2 + 12 xy + 10 y^2 \right)^2 = 25 X^2 + 12 XY + 2 Y^2 $$ with $$ X = x^2 - 2 y^2 \, , \; \; \; Y = 10 xy + 12 y^2 $$ As usual, some manipulation is necessary to write this as $2 u^2 + 7 v^2$

Next, it took some calisthenics, but we finally get $$ \left(5 x^2 + 12 xy + 10 y^2\right)^3 = 5 p^2 + 12 pq + 10 q^2 $$ with $$p = -5x^3 + 30 x y^2 + 24 y^3 \, , \; \; \; q = 6x^3 + 15 x^2 y - 10 y^3 \, . \; \; \; $$ I made explicit use of an improper automorphism to allow $\gcd(p,q) = 1$

Might as well type that in $$ \left( \begin{array}{rr} 1&0 \\ 6&-1 \\ \end{array} \right) \left( \begin{array}{rr} 2&6 \\ 6&25 \\ \end{array} \right) \left( \begin{array}{rr} 1&6 \\ 0&-1 \\ \end{array} \right) = \left( \begin{array}{rr} 2& 6\\ 6&25 \\ \end{array} \right) $$

For example, we get the prime $10037=5 x^2 + 12 xy + 10 y^2$ with $x=79, y= -36$ We get a representation of $10037^3=5 p^2 + 12 pq + 10 q^2$ with $p=-513419, q = 54654.$ Note $\gcd(p,q) = 1.$

./primego
Input three coefficients a b c for positive f(x,y)= a x^2 + b x y + c y^2 
3 2 5
Discriminant  -56

Modulus for arithmetic progressions? 56

  3,      5,     13,     19,     59,     61,     83,    101,    131,    139,
157,    173,    181,    227,    229,    251,    269,    283,    293,    307,
349,    397,    419,    461,    467,    509,    523,    563,    587,    619,
643,    661,    677,    691,    733,    773,    787,    797,    811,    829,
853,    859,    941,    971,    997,   1013,   1021,   1069,   1091,   1109,


3    5   13   19   27   45    mod 56  


jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./cube_of_prime_Primitively_go Input three coefficients a b c for positive f(x,y)= a x^2 + b x y + c y^2 3 2 5 Discriminant -56

apparent biggest legal target 766957636 Maximum number represented? 766957636

xbound 16550 ybound 12819 Sat Jan 16 11:14:10 PST 2021

      27 = 3^3
     125 = 5^3
    2197 = 13^3
    6859 = 19^3
  205379 = 59^3
  226981 = 61^3
  571787 = 83^3
 1030301 = 101^3
 2248091 = 131^3
 2685619 = 139^3
 3869893 = 157^3
 5177717 = 173^3
 5929741 = 181^3
11697083 = 227^3
12008989 = 229^3
15813251 = 251^3
19465109 = 269^3
22665187 = 283^3
25153757 = 293^3
28934443 = 307^3
42508549 = 349^3
62570773 = 397^3
73560059 = 419^3
97972181 = 461^3

101847563 = 467^3 131872229 = 509^3 143055667 = 523^3 178453547 = 563^3 202262003 = 587^3 237176659 = 619^3 265847707 = 643^3 288804781 = 661^3 310288733 = 677^3 329939371 = 691^3 393832837 = 733^3 461889917 = 773^3 487443403 = 787^3 506261573 = 797^3 533411731 = 811^3 569722789 = 829^3 620650477 = 853^3 633839779 = 859^3

Sat Jan 16 11:16:21 PST 2021

Will Jagy
  • 146,052
0

Too big for a comment,

this is mostly observations, perhaps incorrect, that may help you find an answer that makes sense to you. Perhaps I'm missing the point. I'm not sure what you mean by "identity form" even after trying to look it up.

If we allow $B=2$, one of your "forms" appears to be

$$(x_1+y_1)^2(x_2 -y_2)^2=x_3^4-2x_3^2y_3^2+y_3^4=(x_3^2-y_3^2)^2 $$

Take a look at Euclid's formula where your $(x,y)$ are represented by $(m,k).\quad$

$$ \quad A=m^2-k^2,\quad B=2mk,\quad C=m^2+k^2\quad$$

The only restrictions are $m> k>0\quad GCD(m,k)=1\space$ for non-trivial primitives. The $A$-value takes the form $(2n+3);\quad$ the $B$-value takes the form $4n;\quad $ the $C$ value takes the form $4n+1.\quad$ Any of these can be cubes. Even $C\in\{5^3, 13^3, 17^3, 53^3, 241^3,\cdots\}$

Your form appears to the square of side-$A$ of a Pythagorean triple. and there are easy ways of finding $m,k$ values if any of $A,B,C$ are given.

poetasis
  • 6,795
0

Well, I recommend sticking with prime $n=p$ and $n^3 = p^3,$ with the addition that $p$ not divide the discriminant. A good book is David A. Cox, Primes of the form $x^2 + n y^2 $

The example of order 4 was $\langle 5,1,11 \rangle,$ or $5 x^2 + xy + 11 y^2$ The duplicate of this in the class group is $\langle 3,3,19 \rangle.$ Still, as you found, for composite (primitive) values of $\langle 5,1,11 \rangle$ such as $15 \, , \; \; \;$ we may not have a primitive representation of $n^2$ by $\langle 3,3,19 \rangle.$ or by $\langle 1,1,55 \rangle.$ Note that the fourth powers of primes represented by $5,1,11$ such as $5,11,17$ do lead to primitive representation by $1,1,55$

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./squareprimitivego
Input three coefficients a b c 
3 3 19
Discriminant  -219
      25 = 5^2
     121 = 11^2
     289 = 17^2
     841 = 29^2
    2209 = 47^2
    2809 = 53^2
    3481 = 59^2
    6889 = 83^2
    9025 = 5^2 * 19^2
   10201 = 101^2
   11449 = 107^2
   12769 = 113^2
   15625 = 5^6
   17161 = 131^2
   27889 = 167^2
   32041 = 179^2
   34225 = 5^2 * 37^2
   36481 = 191^2
   38809 = 197^2
   43681 = 11^2 * 19^2
   54289 = 233^2
   57121 = 239^2
   69169 = 263^2
   75625 = 5^4 * 11^2
   78961 = 281^2
   93025 = 5^2 * 61^2

============================

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./squareprimitivego
Input three coefficients a b c for positive f(x,y)= a x^2 + b x y + c y^2 
1 1 55
Discriminant  -219
       1 =  1 
     361 = 19^2
     625 = 5^4
    1369 = 37^2
    3025 = 5^2 * 11^2
    3721 = 61^2
    4489 = 67^2
    6241 = 79^2
    7225 = 5^2 * 17^2
    9409 = 97^2
   11881 = 109^2
   14641 = 11^4
   16129 = 127^2
   21025 = 5^2 * 29^2
   32761 = 181^2
   34969 = 11^2 * 17^2
   44521 = 211^2
   49729 = 223^2
   55225 = 5^2 * 47^2
   70225 = 5^2 * 53^2
   80089 = 283^2
   83521 = 17^4
   87025 = 5^2 * 59^2
  101761 = 11^2 * 29^2
  121801 = 349^2
  130321 = 19^4
  134689 = 367^2
  139129 = 373^2
  157609 = 397^2
  172225 = 5^2 * 83^2
  192721 = 439^2

================================

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./primitive_go
Input three coefficients a b c for positive f(x,y)= a x^2 + b x y + c y^2 
5 1 11
Discriminant  219
Maximum number represented? 
10000
     5 = 5;     11 = 11;     15 = 3 * 5;     17 = 17; 
    29 = 29;     33 = 3 * 11;     47 = 47;     51 = 3 * 17; 
    53 = 53;     59 = 59;     83 = 83;     87 = 3 * 29; 
    95 = 5 * 19;    101 = 101;    107 = 107;    113 = 113; 
   125 = 5^3;    131 = 131;    141 = 3 * 47;    159 = 3 * 53; 
   167 = 167;    177 = 3 * 59;    179 = 179;    185 = 5 * 37; 
   191 = 191;    197 = 197;    209 = 11 * 19;    233 = 233; 
   239 = 239;    249 = 3 * 83;    263 = 263;    275 = 5^2 * 11; 
   281 = 281;    285 = 3 * 5 * 19;    303 = 3 * 101;    305 = 5 * 61; 
   321 = 3 * 107;    323 = 17 * 19;    335 = 5 * 67;    339 = 3 * 113; 
   365 = 5 * 73;    375 = 3 * 5^3;    393 = 3 * 131;    395 = 5 * 79; 
   407 = 11 * 37;    425 = 5^2 * 17;    431 = 431;    443 = 443; 
   449 = 449;    467 = 467;    485 = 5 * 97;    491 = 491; 
   501 = 3 * 167;    521 = 521;    537 = 3 * 179;    545 = 5 * 109; 
   551 = 19 * 29;    555 = 3 * 5 * 37;    563 = 563;    569 = 569; 
   573 = 3 * 191;    591 = 3 * 197;    599 = 599;    605 = 5 * 11^2; 
   617 = 617;    627 = 3 * 11 * 19;    629 = 17 * 37;    635 = 5 * 127; 
   647 = 647;    671 = 11 * 61;    677 = 677;    683 = 683; 
   699 = 3 * 233;    701 = 701;    717 = 3 * 239;    719 = 719; 
   725 = 5^2 * 29;    737 = 11 * 67;    743 = 743;    761 = 761; 
   773 = 773;    789 = 3 * 263;    803 = 11 * 73;    825 = 3 * 5^2 * 11; 
   843 = 3 * 281;    863 = 863;    869 = 11 * 79;    881 = 881; 
   887 = 887;    893 = 19 * 47;    905 = 5 * 181;    915 = 3 * 5 * 61; 
   929 = 929;    935 = 5 * 11 * 17;    969 = 3 * 17 * 19;    971 = 971; 
   977 = 977;    983 = 983;   1005 = 3 * 5 * 67;   1007 = 19 * 53; 
  1037 = 17 * 61;   1055 = 5 * 211;   1061 = 1061;   1067 = 11 * 97; 
  1073 = 29 * 37;   1095 = 3 * 5 * 73;   1109 = 1109;   1115 = 5 * 223; 
  1121 = 19 * 59;   1139 = 17 * 67;   1151 = 1151;   1163 = 1163; 
  1175 = 5^2 * 47;   1181 = 1181;   1185 = 3 * 5 * 79;   1199 = 11 * 109; 
  1221 = 3 * 11 * 37;   1241 = 17 * 73;   1275 = 3 * 5^2 * 17;   1283 = 1283; 
  1293 = 3 * 431;   1301 = 1301;   1307 = 1307;   1319 = 1319; 
  1325 = 5^2 * 53;   1329 = 3 * 443;   1331 = 11^3;   1343 = 17 * 79; 
  1347 = 3 * 449;   1361 = 1361;   1367 = 1367;   1373 = 1373; 
  1397 = 11 * 127;   1401 = 3 * 467;   1409 = 1409;   1415 = 5 * 283; 
  1427 = 1427;   1439 = 1439;   1445 = 5 * 17^2;   1455 = 3 * 5 * 97; 
  1473 = 3 * 491;   1475 = 5^2 * 59;   1481 = 1481;   1493 = 1493; 
  1499 = 1499;   1511 = 1511;   1523 = 1523;   1553 = 1553; 
  1559 = 1559;   1563 = 3 * 521;   1577 = 19 * 83;   1595 = 5 * 11 * 29; 
  1601 = 1601;   1613 = 1613;   1619 = 1619;   1635 = 3 * 5 * 109; 
  1637 = 1637;   1649 = 17 * 97;   1653 = 3 * 19 * 29;   1689 = 3 * 563; 
  1707 = 3 * 569;   1709 = 1709;   1721 = 1721;   1739 = 37 * 47; 
  1745 = 5 * 349;   1769 = 29 * 61;   1797 = 3 * 599;   1805 = 5 * 19^2; 
  1811 = 1811;   1815 = 3 * 5 * 11^2;   1835 = 5 * 367;   1847 = 1847; 
  1851 = 3 * 617;   1853 = 17 * 109;   1865 = 5 * 373;   1877 = 1877; 
  1887 = 3 * 17 * 37;   1905 = 3 * 5 * 127;   1913 = 1913;   1919 = 19 * 101; 
  1931 = 1931;   1941 = 3 * 647;   1943 = 29 * 67;   1949 = 1949; 
  1961 = 37 * 53;   1985 = 5 * 397;   1991 = 11 * 181;   1997 = 1997; 
  2013 = 3 * 11 * 61;   2027 = 2027;   2031 = 3 * 677;   2033 = 19 * 107; 
  2039 = 2039;   2049 = 3 * 683;   2057 = 11^2 * 17;   2075 = 5^2 * 83; 
  2087 = 2087;   2103 = 3 * 701;   2117 = 29 * 73;   2147 = 19 * 113; 
  2157 = 3 * 719;   2159 = 17 * 127;   2175 = 3 * 5^2 * 29;   2183 = 37 * 59; 
  2195 = 5 * 439;   2207 = 2207;   2211 = 3 * 11 * 67;   2229 = 3 * 743; 
  2237 = 2237;   2243 = 2243;   2273 = 2273;   2283 = 3 * 761; 
  2285 = 5 * 457;   2291 = 29 * 79;   2297 = 2297;   2315 = 5 * 463; 
  2319 = 3 * 773;   2321 = 11 * 211;   2351 = 2351;   2357 = 2357; 
  2375 = 5^3 * 19;   2381 = 2381;   2399 = 2399;   2409 = 3 * 11 * 73; 
  2423 = 2423;   2435 = 5 * 487;   2453 = 11 * 223;   2465 = 5 * 17 * 29; 
  2477 = 2477;   2489 = 19 * 131;   2495 = 5 * 499;   2525 = 5^2 * 101; 
  2585 = 5 * 11 * 47;   2589 = 3 * 863;   2607 = 3 * 11 * 79;   2615 = 5 * 523; 
  2621 = 2621;   2633 = 2633;   2643 = 3 * 881;   2657 = 2657; 
  2661 = 3 * 887;   2675 = 5^2 * 107;   2679 = 3 * 19 * 47;   2687 = 2687; 
  2711 = 2711;   2715 = 3 * 5 * 181;   2729 = 2729;   2735 = 5 * 547; 
  2741 = 2741;   2753 = 2753;   2787 = 3 * 929;   2789 = 2789; 
  2805 = 3 * 5 * 11 * 17;   2813 = 29 * 97;   2819 = 2819;   2825 = 5^2 * 113; 
  2837 = 2837;   2861 = 2861;   2867 = 47 * 61;   2903 = 2903; 
  2909 = 2909;   2913 = 3 * 971;   2915 = 5 * 11 * 53;   2927 = 2927; 
  2931 = 3 * 977;   2949 = 3 * 983;   2963 = 2963;   3021 = 3 * 19 * 53; 
  3023 = 3023;   3035 = 5 * 607;   3071 = 37 * 83;   3077 = 17 * 181; 
  3083 = 3083;   3095 = 5 * 619;   3111 = 3 * 17 * 61;   3113 = 11 * 283; 
  3119 = 3119;   3125 = 5^5;   3149 = 47 * 67;   3161 = 29 * 109; 
  3165 = 3 * 5 * 211;   3167 = 3167;   3173 = 19 * 167;   3179 = 11 * 17^2; 
  3183 = 3 * 1061;   3191 = 3191;   3201 = 3 * 11 * 97;   3219 = 3 * 29 * 37; 
  3233 = 53 * 61;   3245 = 5 * 11 * 59;   3251 = 3251;   3257 = 3257; 
  3275 = 5^2 * 131;   3299 = 3299;   3305 = 5 * 661;   3327 = 3 * 1109; 
  3329 = 3329;   3345 = 3 * 5 * 223;   3347 = 3347;   3363 = 3 * 19 * 59; 
  3365 = 5 * 673;   3371 = 3371;   3389 = 3389;   3401 = 19 * 179; 
  3417 = 3 * 17 * 67;   3431 = 47 * 73;   3453 = 3 * 1151;   3461 = 3461; 
  3489 = 3 * 1163;   3491 = 3491;   3509 = 11^2 * 29;   3515 = 5 * 19 * 37; 
  3525 = 3 * 5^2 * 47;   3533 = 3533;   3543 = 3 * 1181;   3551 = 53 * 67; 
  3557 = 3557;   3587 = 17 * 211;   3597 = 3 * 11 * 109;   3599 = 59 * 61; 
  3617 = 3617;   3629 = 19 * 191;   3635 = 5 * 727;   3665 = 5 * 733; 
  3671 = 3671;   3683 = 29 * 127;   3695 = 5 * 739;   3701 = 3701; 
  3713 = 47 * 79;   3723 = 3 * 17 * 73;   3737 = 37 * 101;   3743 = 19 * 197; 
  3767 = 3767;   3779 = 3779;   3785 = 5 * 757;   3791 = 17 * 223; 
  3803 = 3803;   3839 = 11 * 349;   3849 = 3 * 1283;   3869 = 53 * 73; 
  3903 = 3 * 1301;   3911 = 3911;   3921 = 3 * 1307;   3929 = 3929; 
  3935 = 5 * 787;   3947 = 3947;   3953 = 59 * 67;   3957 = 3 * 1319; 
  3959 = 37 * 107;   3971 = 11 * 19^2;   3975 = 3 * 5^2 * 53;   3989 = 3989; 
  3993 = 3 * 11^3;   3995 = 5 * 17 * 47;   4001 = 4001;   4029 = 3 * 17 * 79; 
  4037 = 11 * 367;   4049 = 4049;   4055 = 5 * 811;   4073 = 4073; 
  4083 = 3 * 1361;   4101 = 3 * 1367;   4103 = 11 * 373;   4119 = 3 * 1373; 
  4127 = 4127;   4133 = 4133;   4139 = 4139;   4175 = 5^2 * 167; 
  4181 = 37 * 113;   4187 = 53 * 79;   4191 = 3 * 11 * 127;   4205 = 5 * 29^2; 
  4217 = 4217;   4227 = 3 * 1409;   4229 = 4229;   4241 = 4241; 
  4245 = 3 * 5 * 283;   4265 = 5 * 853;   4281 = 3 * 1427;   4307 = 59 * 73; 
  4317 = 3 * 1439;   4335 = 3 * 5 * 17^2;   4337 = 4337;   4349 = 4349; 
  4367 = 11 * 397;   4373 = 4373;   4385 = 5 * 877;   4391 = 4391; 
  4397 = 4397;   4409 = 4409;   4425 = 3 * 5^2 * 59;   4427 = 19 * 233; 
  4443 = 3 * 1481;   4463 = 4463;   4475 = 5^2 * 179;   4479 = 3 * 1493; 
  4481 = 4481;   4493 = 4493;   4497 = 3 * 1499;   4505 = 5 * 17 * 53; 
  4533 = 3 * 1511;   4541 = 19 * 239;   4547 = 4547;   4559 = 47 * 97; 
  4565 = 5 * 11 * 83;   4569 = 3 * 1523;   4625 = 5^3 * 37;   4643 = 4643; 
  4659 = 3 * 1553;   4661 = 59 * 79;   4677 = 3 * 1559;   4679 = 4679; 
  4685 = 5 * 937;   4703 = 4703;   4731 = 3 * 19 * 83;   4775 = 5^2 * 191; 
  4785 = 3 * 5 * 11 * 29;   4787 = 4787;   4803 = 3 * 1601;   4811 = 17 * 283; 
  4829 = 11 * 439;   4835 = 5 * 967;   4839 = 3 * 1613;   4847 = 37 * 131; 
  4857 = 3 * 1619;   4871 = 4871;   4877 = 4877;   4911 = 3 * 1637; 
  4913 = 17^3;   4919 = 4919;   4925 = 5^2 * 197;   4931 = 4931; 
  4943 = 4943;   4947 = 3 * 17 * 97;   4985 = 5 * 997;   4997 = 19 * 263; 
  5003 = 5003;   5009 = 5009;   5015 = 5 * 17 * 59;   5027 = 11 * 457; 
  5051 = 5051;   5063 = 61 * 83;   5081 = 5081;   5093 = 11 * 463; 
  5099 = 5099;   5105 = 5 * 1021;   5123 = 47 * 109;   5127 = 3 * 1709; 
  5141 = 53 * 97;   5153 = 5153;   5163 = 3 * 1721;   5217 = 3 * 37 * 47; 
  5225 = 5^2 * 11 * 19;   5235 = 3 * 5 * 349;   5249 = 29 * 181;   5261 = 5261; 
  5273 = 5273;   5303 = 5303;   5307 = 3 * 29 * 61;   5309 = 5309; 
  5315 = 5 * 1063;   5339 = 19 * 281;   5351 = 5351;   5357 = 11 * 487; 
  5381 = 5381;   5387 = 5387;   5415 = 3 * 5 * 19^2;   5417 = 5417; 
  5423 = 11 * 17 * 29;   5433 = 3 * 1811;   5435 = 5 * 1087;   5441 = 5441; 
  5465 = 5 * 1093;   5489 = 11 * 499;   5501 = 5501;   5505 = 3 * 5 * 367; 
  5519 = 5519;   5531 = 5531;   5541 = 3 * 1847;   5555 = 5 * 11 * 101; 
  5559 = 3 * 17 * 109;   5561 = 67 * 83;   5591 = 5591;   5595 = 3 * 5 * 373; 
  5631 = 3 * 1877;   5651 = 5651;   5687 = 11^2 * 47;   5711 = 5711; 
  5723 = 59 * 97;   5739 = 3 * 1913;   5741 = 5741;   5753 = 11 * 523; 
  5757 = 3 * 19 * 101;   5777 = 53 * 109;   5793 = 3 * 1931;   5795 = 5 * 19 * 61; 
  5801 = 5801;   5807 = 5807;   5825 = 5^2 * 233;   5829 = 3 * 29 * 67; 
  5847 = 3 * 1949;   5855 = 5 * 1171;   5861 = 5861;   5879 = 5879; 
  5883 = 3 * 37 * 53;   5885 = 5 * 11 * 107;   5903 = 5903;   5927 = 5927; 
  5933 = 17 * 349;   5939 = 5939;   5955 = 3 * 5 * 397;   5969 = 47 * 127; 
  5973 = 3 * 11 * 181;   5975 = 5^2 * 239;   5981 = 5981;   5991 = 3 * 1997; 
  6017 = 11 * 547;   6029 = 6029;   6059 = 73 * 83;   6081 = 3 * 2027; 
  6089 = 6089;   6099 = 3 * 19 * 107;   6101 = 6101;   6117 = 3 * 2039; 
  6119 = 29 * 211;   6137 = 17 * 19^2;   6143 = 6143;   6161 = 61 * 101; 
  6171 = 3 * 11^2 * 17;   6179 = 37 * 167;   6185 = 5 * 1237;   6215 = 5 * 11 * 113; 
  6225 = 3 * 5^2 * 83;   6239 = 17 * 367;   6245 = 5 * 1249;   6257 = 6257; 
  6261 = 3 * 2087;   6263 = 6263;   6299 = 6299;   6311 = 6311; 
  6317 = 6317;   6323 = 6323;   6329 = 6329;   6341 = 17 * 373; 
  6351 = 3 * 29 * 73;   6365 = 5 * 19 * 67;   6395 = 5 * 1279;   6413 = 11^2 * 53; 
  6431 = 59 * 109;   6441 = 3 * 19 * 113;   6455 = 5 * 1291;   6467 = 29 * 223; 
  6477 = 3 * 17 * 127;   6527 = 61 * 107;   6549 = 3 * 37 * 59;   6557 = 79 * 83; 
  6563 = 6563;   6575 = 5^2 * 263;   6581 = 6581;   6585 = 3 * 5 * 439; 
  6599 = 6599;   6621 = 3 * 2207;   6623 = 37 * 179;   6653 = 6653; 
  6677 = 11 * 607;   6701 = 6701;   6711 = 3 * 2237;   6729 = 3 * 2243; 
  6731 = 53 * 127;   6737 = 6737;   6749 = 17 * 397;   6761 = 6761; 
  6767 = 67 * 101;   6779 = 6779;   6803 = 6803;   6809 = 11 * 619; 
  6815 = 5 * 29 * 47;   6819 = 3 * 2273;   6833 = 6833;   6845 = 5 * 37^2; 
  6855 = 3 * 5 * 457;   6857 = 6857;   6869 = 6869;   6873 = 3 * 29 * 79; 
  6875 = 5^4 * 11;   6891 = 3 * 2297;   6893 = 61 * 113;   6905 = 5 * 1381; 
  6935 = 5 * 19 * 73;   6945 = 3 * 5 * 463;   6963 = 3 * 11 * 211;   6977 = 6977; 
  6995 = 5 * 1399;   7001 = 7001;   7013 = 7013;   7019 = 7019; 
  7025 = 5^2 * 281;   7053 = 3 * 2351;   7055 = 5 * 17 * 83;   7067 = 37 * 191; 
  7071 = 3 * 2357;   7103 = 7103;   7109 = 7109;   7115 = 5 * 1423; 
  7121 = 7121;   7125 = 3 * 5^3 * 19;   7139 = 11^2 * 59;   7143 = 3 * 2381; 
  7169 = 67 * 107;   7187 = 7187;   7193 = 7193;   7197 = 3 * 2399; 
  7205 = 5 * 11 * 131;   7247 = 7247;   7253 = 7253;   7269 = 3 * 2423; 
  7271 = 11 * 661;   7283 = 7283;   7289 = 37 * 197;   7295 = 5 * 1459; 
  7305 = 3 * 5 * 487;   7307 = 7307;   7331 = 7331;   7359 = 3 * 11 * 223; 
  7373 = 73 * 101;   7395 = 3 * 5 * 17 * 29;   7403 = 11 * 673;   7415 = 5 * 1483; 
  7431 = 3 * 2477;   7433 = 7433;   7451 = 7451;   7457 = 7457; 
  7463 = 17 * 439;   7467 = 3 * 19 * 131;   7485 = 3 * 5 * 499;   7493 = 59 * 127; 
  7499 = 7499;   7505 = 5 * 19 * 79;   7529 = 7529;   7541 = 7541; 
  7547 = 7547;   7559 = 7559;   7571 = 67 * 113;   7575 = 3 * 5^2 * 101; 
  7577 = 7577;   7607 = 7607;   7625 = 5^3 * 61;   7643 = 7643; 
  7655 = 5 * 1531;   7685 = 5 * 29 * 53;   7691 = 7691;   7727 = 7727; 
  7733 = 11 * 19 * 37;   7745 = 5 * 1549;   7755 = 3 * 5 * 11 * 47;   7769 = 17 * 457; 
  7811 = 73 * 107;   7841 = 7841;   7845 = 3 * 5 * 523;   7853 = 7853; 
  7863 = 3 * 2621;   7871 = 17 * 463;   7877 = 7877;   7895 = 5 * 1579; 
  7899 = 3 * 2633;   7901 = 7901;   7937 = 7937;   7971 = 3 * 2657; 
  7979 = 79 * 101;   7985 = 5 * 1597;   7991 = 61 * 131;   7997 = 11 * 727; 
  8009 = 8009;   8025 = 3 * 5^2 * 107;   8045 = 5 * 1609;   8051 = 83 * 97; 
  8061 = 3 * 2687;   8063 = 11 * 733;   8069 = 8069;   8075 = 5^2 * 17 * 19; 
  8081 = 8081;   8093 = 8093;   8117 = 8117;   8123 = 8123; 
  8129 = 11 * 739;   8133 = 3 * 2711;   8147 = 8147;   8171 = 8171; 
  8187 = 3 * 2729;   8189 = 19 * 431;   8205 = 3 * 5 * 547;   8207 = 29 * 283; 
  8219 = 8219;   8223 = 3 * 2741;   8249 = 73 * 113;   8259 = 3 * 2753; 
  8279 = 17 * 487;   8291 = 8291;   8315 = 5 * 1663;   8327 = 11 * 757; 
  8367 = 3 * 2789;   8369 = 8369;   8375 = 5^3 * 67;   8381 = 17^2 * 29; 
  8417 = 19 * 443;   8423 = 8423;   8429 = 8429;   8439 = 3 * 29 * 97; 
  8447 = 8447;   8453 = 79 * 107;   8457 = 3 * 2819;   8475 = 3 * 5^2 * 113; 
  8483 = 17 * 499;   8501 = 8501;   8507 = 47 * 181;   8511 = 3 * 2837; 
  8513 = 8513;   8531 = 19 * 449;   8555 = 5 * 29 * 59;   8583 = 3 * 2861; 
  8585 = 5 * 17 * 101;   8597 = 8597;   8601 = 3 * 47 * 61;   8609 = 8609; 
  8621 = 37 * 233;   8627 = 8627;   8657 = 11 * 787;   8709 = 3 * 2903; 
  8727 = 3 * 2909;   8745 = 3 * 5 * 11 * 53;   8747 = 8747;   8753 = 8753; 
  8765 = 5 * 1753;   8777 = 67 * 131;   8781 = 3 * 2927;   8789 = 11 * 17 * 47; 
  8807 = 8807;   8819 = 8819;   8843 = 37 * 239;   8861 = 8861; 
  8867 = 8867;   8873 = 19 * 467;   8885 = 5 * 1777;   8889 = 3 * 2963; 
  8891 = 17 * 523;   8921 = 11 * 811;   8927 = 79 * 113;   8945 = 5 * 1789; 
  8951 = 8951;   8969 = 8969;   8999 = 8999;   9005 = 5 * 1801; 
  9041 = 9041;   9047 = 83 * 109;   9059 = 9059;   9069 = 3 * 3023; 
  9095 = 5 * 17 * 107;   9105 = 3 * 5 * 607;   9125 = 5^3 * 73;   9155 = 5 * 1831; 
  9185 = 5 * 11 * 167;   9203 = 9203;   9209 = 9209;   9213 = 3 * 37 * 83; 
  9215 = 5 * 19 * 97;   9227 = 9227;   9231 = 3 * 17 * 181;   9249 = 3 * 3083; 
  9251 = 11 * 29^2;   9257 = 9257;   9281 = 9281;   9285 = 3 * 5 * 619; 
  9293 = 9293;   9299 = 17 * 547;   9305 = 5 * 1861;   9311 = 9311; 
  9323 = 9323;   9329 = 19 * 491;   9339 = 3 * 11 * 283;   9357 = 3 * 3119; 
  9365 = 5 * 1873;   9375 = 3 * 5^5;   9377 = 9377;   9383 = 11 * 853; 
  9395 = 5 * 1879;   9431 = 9431;   9437 = 9437;   9447 = 3 * 47 * 67; 
  9461 = 9461;   9473 = 9473;   9479 = 9479;   9483 = 3 * 29 * 109; 
  9497 = 9497;   9501 = 3 * 3167;   9519 = 3 * 19 * 167;   9521 = 9521; 
  9533 = 9533;   9537 = 3 * 11 * 17^2;   9563 = 73 * 131;   9573 = 3 * 3191; 
  9593 = 53 * 181;   9605 = 5 * 17 * 113;   9623 = 9623;   9629 = 9629; 
  9647 = 11 * 877;   9665 = 5 * 1933;   9689 = 9689;   9699 = 3 * 53 * 61; 
  9719 = 9719;   9731 = 37 * 263;   9735 = 3 * 5 * 11 * 59;   9743 = 9743; 
  9749 = 9749;   9753 = 3 * 3251;   9767 = 9767;   9771 = 3 * 3257; 
  9797 = 97 * 101;   9803 = 9803;   9825 = 3 * 5^2 * 131;   9833 = 9833; 
  9845 = 5 * 11 * 179;   9875 = 5^3 * 79;   9897 = 3 * 3299;   9899 = 19 * 521; 
  9911 = 11 * 17 * 53;   9915 = 3 * 5 * 661;   9917 = 47 * 211;   9923 = 9923; 
  9935 = 5 * 1987;   9941 = 9941;   9987 = 3 * 3329;

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$

The first edition of Cox has a typographical error in the description of Dirichlet composition. It is correct in the second edition:

enter image description here

Will Jagy
  • 146,052