The Weyl-Kac denominator formula states
$$\prod_{\alpha\in\Phi^+}(1-e(-\alpha))^{mult(\alpha)}=\sum_{w\in W}\epsilon(w)e(w(\rho)-\rho))$$ Where the product is taken over the positive roots and the sum is taken over the Weyl group. Here $\epsilon(w)=(-1)^{l(w)}$ where $l(w)$ denotes the length of $w$ and $e(\alpha)$ is the formal exponential.
I'm trying to apply this to the affinization of $\mathfrak{sl}_2$ with simple roots $\{\alpha_0,\alpha_1\}$. In this case the $\rho=\frac{\alpha_1}{2}+2\Lambda_0$ seems to work. Here $\Lambda_0$ is defined on the coroots st. $\Lambda_0(\alpha_i^\vee)=\delta_{i0}$.
The Weyl group of the affinization of $\mathfrak{sl}_2$ is generated by $s_0,s_1$ st. $s_0^2=s_1^2=1$ (it's the infinite dihedral group). The generators works on $\rho$ in the following way $$s_0(\rho)=\rho-\rho(\alpha_0^\vee)\alpha_0=\rho+\alpha_0=\rho-\alpha_1+\delta$$ $$s_1(\rho)=\rho-\rho(\alpha_1^\vee)\alpha_1=\rho-\alpha_1$$
Now for the formula. The positive roots are exactly $\alpha_1+k\delta$ for $k\geq 0$, $-\alpha_1+k\delta$ for $k\in\mathbb{N}$ and $k\delta$ for $k\in\mathbb{N}$. Here $\delta=\alpha_0+\alpha_1$. Writing $e(-\delta)=q$ and $e(-\alpha_1)=r$ then the left side is $$\prod_{k>0}(1-q^k)(1-q^{k-1}r)(1-q^kr^{-1})$$ Turning to the right side, is where I get in trouble. I've seen it should equal $\sum_{k\in\mathbb{Z}}(-1)^kr^kq^{\frac{k(k-1)}{2}}$, so working my way backwards then $\sum_{w\in W}\epsilon(w)e(w(\rho)-\rho)$ should equal \begin{align*} \sum_{k\in\mathbb{Z}}(-1)^ke(-k\alpha_1)e(-\frac{k(k-1)}{2}\delta) &= \sum_{k\in\mathbb{Z}}(-1)^ke(-k\alpha_1-\frac{k(k-1)}{2}\delta) \\ &=\sum_{m\in\mathbb{Z}}e(-2m\alpha_1-\frac{2m(2m-1)}{2}\delta)\\ &-e(-(2m+1)\alpha_1-\frac{(2m+1)((2m+1)-1)}{2}\delta) \\ &=\sum_{m\in\mathbb{Z}}e(-2m\alpha_1-m(2m-1)\delta)\\ &-e(-(2m+1)\alpha_1-(2m+1)m\delta) \end{align*} Which is where I'm stuck.