I encountered following expression
$$\psi ^{(0)}\left(z+\frac{1}{4}\right)-\psi ^{(0)}\left(z-\frac{1}{4}\right)$$
Searching in different resources I managed to find these identities involving the digamma function $\psi^{(0)}(x)=\frac{\mathrm{d}}{\mathrm{d}x}\ln\Gamma(x)=\frac{1}{\Gamma (x)}\frac{\mathrm{d} \Gamma (x)}{\mathrm{d} x}$.
- $\psi ^{(0)}(z+1)-\psi ^{(0)}(z-1)=\frac{1}{z}+\frac{1}{z-1}$
- $\psi ^{(0)}\left(z+\frac{1}{2}\right)-\psi ^{(0)}\left(z-\frac{1}{2}\right)=\frac{1}{z-\frac{1}{2}}$
- $\psi ^{(0)}\left(z+\frac{1}{4}\right)-\psi ^{(0)}\left(z-\frac{1}{4}\right)=?$
Is there any similar expression for the third case? Or are there any simplification of any other form?