Let $G(V,E)$ be a directed graph, where $V=\{a_1,\ldots,a_n\}$ is a set of vertices and $E$ is a set of ordered pairs of $V$, with $|V|=n$.
Now, let be $G(W,F)$ be a graph where $W$ is a set of vertices, such that $W=\{a_1,\ldots,a_{2n}\}$ with $|W|=2n$, and $F$ is a set of ordered pairs of $W$ defined as follows: $$\forall i, j \in \{1, \ldots, n\} : (a_i,a_{j+n}) \in F \text{ if } (a_i,a_{j}) \in E \\ \forall i \in \{1, \ldots, n\} : (a_{i+n},a_i) \in F$$
Now we define the capacities: $$c(a,b)=1 \text{ if } (a,b) \in F$$
And we define a cost: $$\forall i \in \{1, \ldots, n\} : p(a_{i+n},a_i)=-1 \text{ if } (a_{i+n},a_i) \in F \\ p=0 \text{ else}$$
The source as $a_{n+1}$ and the sink as $a_{n+1}$.
Does the graph $G(W,F,c,p)$ have a minimum cost flow of $-n$ if and only if the graph $G(V,E)$ has a Hamiltonian cycle?
(Comment to an answer in the comments section)
Michael, for your matrix with capacities G(V,E) the matrix G(W,F) is:
cap = [[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]
cost = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0]]