9

I have a question about comultiplication for coalgebras:

Suppose $C$ is a coalgebra over the field $k$. How does one show that the comultiplication map $\Delta:C\to C\otimes C$ is a coalgebra map if and only if $C$ is cocommutative?

The main problem that I encounter is that when I tried to do it by definition, I was struggling to find a relation between $c_{(1)(2)}$ and $c_{(2)(1)}$. In that case, is there any other way for which I could tackle this question?

KonKan
  • 7,572
yoshi
  • 1,061
  • 7
    This is formally dual to the following problem: Suppose $A$ is an algebra over the field $k$. Show that the multiplication map $\mu : A \otimes A \to A$ is an algebra map if and only if $A$ is commutative. – Zhen Lin May 20 '13 at 06:58
  • 4
    In fact this holds in any symmetric monoidal category. When you apply this to the dual of the category of vector spaces, you get your result. If you apply it to the category of vector spaces, you get the result mentioned by Zhen Lin. Of course we don't need a field as a base. We need nothing. – Martin Brandenburg May 20 '13 at 09:31
  • This is also Exercise 1.59 (a) in arXiv:1409.8356v3 (see http://arxiv.org/src/1409.8356v3/anc/HopfComb-v54-with-solutions.pdf for solutions). – darij grinberg Mar 24 '16 at 01:54

1 Answers1

1

Given a coalgebra $(C,\Delta,\varepsilon)$, over a field $k$, we can form the tensor product coalgebra $(C\otimes C,\Delta_{C\otimes C},\varepsilon_{C\otimes C})$ through: $$ \Delta_{C\otimes C}=(Id\otimes\tau\otimes Id)\circ(\Delta\otimes\Delta):C\otimes C\rightarrow C\otimes C \otimes C \otimes C , \\ \\ \\ \varepsilon_{C\otimes C}=\phi \circ (\varepsilon\otimes\varepsilon):C\otimes C\rightarrow k $$ where $Id$ is the identity map and $\phi:k\otimes k\stackrel{\cong}{\rightarrow} k$ the natural isomorphism.

The comultiplication $\Delta:C\rightarrow C\otimes C$ being a morphism of coalgebras, or a coalgebra map, by definition means that for an arbitrary $c\in C$ we have: $\varepsilon_C(c)=\varepsilon_{C\otimes C}\circ\Delta(c)=\varepsilon(c_1)\varepsilon(c_2)$ and $$ \Delta_{C\otimes C}\circ\Delta(c)=(\Delta\otimes\Delta)\circ\Delta(c) \Leftrightarrow \\ \\ \\ \Leftrightarrow \Delta_{C\otimes C}\big(\sum c_1\otimes c_2\big)=(\Delta\otimes\Delta)\big(\sum c_1\otimes c_2\big)\Leftrightarrow \\ \\ \\ \Leftrightarrow (Id\otimes\tau\otimes Id)\circ(\Delta\otimes\Delta)\big(\sum c_1\otimes c_2\big)=(\Delta\otimes\Delta)\big(\sum c_1\otimes c_2\big)\Leftrightarrow \\ \\ \\ \Leftrightarrow \sum c_1\otimes c_3\otimes c_2\otimes c_4=\sum c_1\otimes c_2\otimes c_3\otimes c_4 $$ In the last line of the above, we have made use of generalized coassociativity, expressing both sides in Sweedler's notation. Given that $\Delta(c)=\sum c_1\otimes c_2$, the last line of the above could have been written (without using generalized coassociativity) alternatively as: $$ \sum c_{1_1}\otimes c_{2_1}\otimes c_{1_2}\otimes c_{2_2}=\sum c_{1_1}\otimes c_{1_2}\otimes c_{2_1}\otimes c_{2_2} $$ Now, applying to both sides of the last line of the above, the map $(\varepsilon\otimes Id\otimes Id\otimes\varepsilon)$, we get $$ \sum \varepsilon(c_{1_1})\otimes c_{2_1}\otimes c_{1_2}\otimes \varepsilon(c_{2_2})=\sum \varepsilon(c_{1_1})\otimes c_{1_2}\otimes c_{2_1}\otimes \varepsilon(c_{2_2})\Leftrightarrow \\ \\ \\ \Leftrightarrow \sum\varepsilon(c_{2_2}) c_{2_1}\otimes \varepsilon(c_{1_1})c_{1_2}=\sum \varepsilon(c_{1_1})c_{1_2}\otimes \varepsilon(c_{2_2})c_{2_1} \Leftrightarrow \\ \\ \\ \Leftrightarrow \sum c_2\otimes c_1=\sum c_1\otimes c_2 $$ for any $c\in C$. In the last line, use has been made of the defining property of the counity map: $\sum\varepsilon(c_1)c_2=\sum c_1\varepsilon(c_2)=c$, for any $c\in C$.

Thus, we have shown that: If the comultiplication $\Delta:C\rightarrow C\otimes C$ is a morphism of coalgebras, or a coalgebra map then this implies the cocommutativity of $C$.

The converse implication, i.e. cocommutativity of $C$ implies that the comultiplication is a coalgebra map, comes from the fact that generalized coassociativity permits us to write
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\Delta\otimes\Delta)=(Id\otimes\Delta\otimes Id)\circ(Id\otimes\Delta)$
and thus, together with cocommutativity of $C$, they imply $$ (\Delta\otimes\Delta)=(Id\otimes\Delta\otimes Id)\circ(Id\otimes\Delta)= \\ =(Id\otimes\tau\circ\Delta\otimes Id)\circ(Id\otimes\Delta) = \\ =(Id\otimes\tau\otimes Id)\circ(Id\otimes\Delta\otimes Id)\circ(Id\otimes\Delta)= (Id\otimes\tau\otimes Id)\circ(\Delta\otimes\Delta)=\Delta_{C\otimes C}\Rightarrow \\ \Rightarrow (\Delta\otimes\Delta)\circ\Delta=\Delta_{C\otimes C}\circ\Delta $$

P.S. This is exercise 3, p.66, Ch. III, from Moss E.Sweedler's book on Hopf algebras.

KonKan
  • 7,572
  • How do you prove $(\Delta\otimes\Delta)=(Id\otimes\Delta\otimes Id)\circ(Id\otimes\Delta)$? I think it should be $(\Delta\otimes\Delta)\circ \Delta=(Id\otimes\Delta\otimes Id)\circ(Id\otimes\Delta)\circ \Delta$. – luxerhia Mar 22 '23 at 07:08