You can grind through it like this:
$$\lim_{h \to 0} \frac{\ln(x+h)-\ln (x)}{h} = \lim_{h\to 0} \frac{\ln\left(\frac{x+h}{x}\right)}{h} $$
$$=\lim_{h\to 0} \frac{\ln\left(1+\frac{h}{x}\right)}{h} =
\lim_{h\to 0} \ln\left(\exp\left( \frac{\ln\left(1+\frac{h}{x}\right)}{h}\right)\right)$$
$$= \lim_{h\to 0} \ln\left( \left(1+\frac{x}{h}\right)^{1/h}\right). $$
Now substitute $y =x/h$, so when $h\to 0$, then $y\to \infty.$ Also $h = x/y$. The above
$$ = \lim_{y\to \infty} \ln\left( \left(1+\frac{1}{y}\right)^{\frac{y}{x}}\right). $$
Since the (or one) definition of $e$ is $e=\lim_{y\to \infty} \left(1+\frac{1}{y}\right)^y,$ and since $\ln x$ is continuous, we have
$$= \ln\left( \left(\lim_{y\to \infty}\left(1+\frac{1}{y}\right)^y\right)^{1/x}\right)=\ln e^{1/x} = \frac{1}{x}. $$