I have the function $ f(z)=\frac{z}{e^z-1} $. I'm looking for a power series.
My idea:
I define a power series $$ \frac{z}{e^z-1}=f(z):=\sum\limits_{k=0}^\infty c_k\cdot z^k. $$ Now I start equating the coefficients $ c_k $:
$$ \begin{align}z&=(e^z-1)\cdot \left(\sum\limits_{k=0}^\infty c_k\cdot z^k \right)=e^z\left( \sum\limits_{k=0}^\infty c_k\cdot z^k\right)-\sum\limits_{k=0}^\infty c_k\cdot z^k\\&=\left(\sum\limits_{k=0}^\infty \frac{1}{k!}\cdot z^k\right)\cdot \left(\sum\limits_{k=0}^\infty c_k\cdot z^k\right)-\left(\sum\limits_{k=0}^\infty c_k\cdot z^k\right)\\&=\sum\limits_{k=0}^\infty\left(\sum\limits_{l=0}^k \frac{1}{l!}\cdot z^l\cdot c_{k-l}\cdot z^{k-l}\right)-\left(\sum\limits_{k=0}^\infty c_k\cdot z^k\right) \\&=\sum\limits_{k=0}^\infty\left(\sum\limits_{l=0}^k \frac{1}{l!}\cdot c_{k-l}\cdot z^{k}\right)-\left(\sum\limits_{k=0}^\infty c_k\cdot z^k\right)\\&=\sum\limits_{k=0}^\infty\left(\sum\limits_{l=0}^k \frac{1}{l!}\cdot c_{k-l}\right)\cdot z^{k}-\left(\sum\limits_{k=0}^\infty c_k\cdot z^k\right)\\&=\sum_{k=0}^\infty \left[\left(\sum\limits_{l=0}^k\frac{1}{l!}\cdot c_{k-l} \right)-c_k \right]\cdot z^k\\&=\sum_{k=0}^\infty \left(\sum\limits_{l=1}^k\frac{1}{l!}\cdot c_{k-l} \right)\cdot z^k\end{align}$$
$ \deg k=0: \quad 0=\sum\limits_{l=1}^0\frac{1}{l!}\cdot c_{k-l}=0\\\deg k=1: \quad 1=\sum\limits_{l=1}^1\frac{1}{l!}\cdot c_{k-l}=c_0\\\deg k\geq 2:\quad 0=\sum\limits_{l=1}^k\frac{1}{l!}\cdot c_{k-l}=\left(\sum\limits_{l=2}^k\frac{1}{l!}\cdot c_{k-l}\right) +c_{k-1}\\\qquad \qquad \ \ c_{k-1}=-\sum\limits_{l=2}^k\frac{1}{l!}\cdot c_{k-l}$.
I struggle to show that $c_{k-1}$ converges absolutely (I tried ratio test and root test) and I'm not to find an explizit formula of $c_k$ and taylor approximation is a catastrophy concerning of the derivatives of $ f $. How else could I show that this series converges absolutely?