These conjectures are correct and can be proved by reducing the determinants to suitable triangular forms to determine the exact values.
Setup of the problem
Consider two $n \times n$ matrices $A_n$ and $B_n$ defined by the 2 dimensional sequences defined on positive integers $\mathbb{Z}^+$, or natural numbers where $\mathbb{Z}^+ = \mathbb{N} = \{1,2,3,\cdots\}$. The sequences are $a_{i,j}^{(n)}$ and $b_{i,j}^{(n)}$ defined by the following relations;
$$
a_{i,j}^{(n)} := \min\{i,j\}
\quad \quad
b_{i,j}^{(n)} := \max\{i,j\}
\quad \quad
\forall i,j \leq n \in \mathbb{Z}^+
$$
The generalized matrices are thus defined by the following templates;
$$
A_n:=
\begin{pmatrix}
a_{i,j}^{(n)}
\end{pmatrix}_
{i,j = 1, 2, ..., n}
=
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
1 & 2 & 2 & \cdots & 2 & 2\\
1 & 2 & 3 & \cdots & 3 & 3\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 2 & 3 & \cdots & n-1 & n-1\\
1 & 2 & 3 & \cdots & n-1 & n\\
\end{bmatrix}
$$
$$
B_n:=
\begin{pmatrix}
b_{i,j}^{(n)}
\end{pmatrix}_
{i,j = 1, 2, ..., n}
=
\begin{bmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
2 & 2 & 3 & \cdots & n-1 & n\\
3 & 3 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
n-1 & n-1 & n-1 & \cdots & n-1 & n\\
n & n & n & \cdots & n & n\\
\end{bmatrix}
$$
Proof for $\det{A_n}$
Consider the determinant of the matrix $A_n$;
$$
\det{A_n}
=
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
1 & 2 & 2 & \cdots & 2 & 2\\
1 & 2 & 3 & \cdots & 3 & 3\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 2 & 3 & \cdots & n-1 & n-1\\
1 & 2 & 3 & \cdots & n-1 & n\\
\end{vmatrix}
$$
Subtracting the $(n-1)^{th}$ row from the $n^{th}$ row. $\mathcal{R}_n := \mathcal{R}_n - \mathcal{R}_{n-1}$
$$
\det{A_n}
=
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
1 & 2 & 2 & \cdots & 2 & 2\\
1 & 2 & 3 & \cdots & 3 & 3\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 2 & 3 & \cdots & n-1 & n-1\\
0 & 0 & 0 & \cdots & 0 & 1\\
\end{vmatrix}
$$
Next subtract the $(n-2)^{th}$ row from the $(n-1)^{th}$ row. $\mathcal{R}_{n-1} := \mathcal{R}_{n-1} - \mathcal{R}_{n-2}$
$$
\det{A_n}
=
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
1 & 2 & 2 & \cdots & 2 & 2\\
1 & 2 & 3 & \cdots & 3 & 3\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & 1 & 1\\
0 & 0 & 0 & \cdots & 0 & 1\\
\end{vmatrix}
$$
Similarly, following this pattern upward of removing the previous row from the current row, upto the second row. $\mathcal{R}_{i} := \mathcal{R}_{i} - \mathcal{R}_{i-1} \quad \forall i=2,3,\cdots,n$
$$
\det{A_n}
=
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
1 & 2 & 2 & \cdots & 2 & 2\\
1 & 2 & 3 & \cdots & 3 & 3\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & 1 & 1\\
0 & 0 & 0 & \cdots & 0 & 1\\
\end{vmatrix}
=
\cdots
=
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
1 & 2 & 2 & \cdots & 2 & 2\\
0 & 0 & 1 & \cdots & 1 & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & 1 & 1\\
0 & 0 & 0 & \cdots & 0 & 1\\
\end{vmatrix}
=
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
0 & 1 & 1 & \cdots & 1 & 1\\
0 & 0 & 1 & \cdots & 1 & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & 1 & 1\\
0 & 0 & 0 & \cdots & 0 & 1\\
\end{vmatrix}
$$
Finally an upper triangular matrix is left after performing these $(n-1)$ row operations of subtracting the previous from each row. The sequence in which these operations are performed is important starting from the last row upwards to the second row. The upper triangular matrix has all $1's$ in the upper triangle and all $0's$ below the diagonal. The determinant of a triangular matrix is the product of the entries of the diagonal. Thus;
$$
\det{A_n}=\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 & 1\\
0 & 1 & 1 & \cdots & 1 & 1\\
0 & 0 & 1 & \cdots & 1 & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & 1 & 1\\
0 & 0 & 0 & \cdots & 0 & 1\\
\end{vmatrix}
=
(1)^n=1
\quad \blacksquare
$$
Proof for $\det{B_n}$
For the proof of the determinant of $B_n$ we will follow a similar approach as for the previous case. We will try to convert the determinant into a triangular form through elementary row operations.
$$
\det{B_n}=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
2 & 2 & 3 & \cdots & n-1 & n\\
3 & 3 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
n-1 & n-1 & n-1 & \cdots & n-1 & n\\
n & n & n & \cdots & n & n\\
\end{vmatrix}
$$
Subtracting the $(n-1)^{th}$ row from the $n^{th}$ row. $\mathcal{R}_n := \mathcal{R}_n - \mathcal{R}_{n-1}$
$$
\det{B_n}=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
2 & 2 & 3 & \cdots & n-1 & n\\
3 & 3 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
n-1 & n-1 & n-1 & \cdots & n-1 & n\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
$$
Next subtract the $(n-2)^{th}$ row from the $(n-1)^{th}$ row. $\mathcal{R}_{n-1} := \mathcal{R}_{n-1} - \mathcal{R}_{n-2}$
$$
\det{B_n}=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
2 & 2 & 3 & \cdots & n-1 & n\\
3 & 3 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
$$
Similarly, following this pattern upward of removing the previous row from the current row, upto the second row. $\mathcal{R}_{i} := \mathcal{R}_{i} - \mathcal{R}_{i-1} \quad \forall i=2,3,\cdots,n$
$$
\det{B_n}
=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
2 & 2 & 3 & \cdots & n-1 & n\\
3 & 3 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
=
\cdots
=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
2 & 2 & 3 & \cdots & n-1 & n\\
1 & 1 & 0 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
$$
In order to convert this into a triangular form, the first row must be bought all the way to the bottom, while shifting every other row up by $1$. This is performed by consecutive swapping of 2 rows. Recall that every row swap flips the sign of the determinant of the matrix, thus;
$$
\det{B_n}
=
\begin{vmatrix}
1 & 2 & 3 & \cdots & n-1 & n\\
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
$$
Swapping $1^{st}$ and $2^{nd}$ rows gives the following. $\mathcal{R}_{1} <=> \mathcal{R}_{2}$
$$
\det{B_n}
=
(-1)
\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 2 & 3 & \cdots & n-1 & n\\
1 & 1 & 0 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
$$
Next swap the $2^{nd}$ and $3^{rd}$ rows. $\mathcal{R}_{2} <=> \mathcal{R}_{3}$
$$
\det{B_n}
=
(-1)^{2}
\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
1 & 2 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
$$
Similarly continue this pattern of swapping the rows $(n-1)$ times in total till the last two rows. $\mathcal{R}_{i} <=> \mathcal{R}_{i+1} \quad \forall i=1,2,\cdots,n-1$
$$
\det{B_n}
=
(-1)^{2}
\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
1 & 2 & 3 & \cdots & n-1 & n\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
=
(-1)^{3}
\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
= \cdots =
(-1)^{n-2}
\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 2 & 3 & \cdots & n-1 & n\\
1 & 1 & 1 & \cdots & 1 & 0\\
\end{vmatrix}
=
(-1)^{n-1}
\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0\\
1 & 1 & 0 & \cdots & 0 & 0\\
1 & 1 & 1 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
1 & 1 & 1 & \cdots & 1 & 0\\
1 & 2 & 3 & \cdots & n-1 & n\\
\end{vmatrix}
$$
This determinant is finally in a lower triangular form. The sequence of swaps between two consecutive rows starting from the first two rows down to the last two rows is important to bring this matrix into the triangular form as shown above. The lower triangular matrix contains all $0’s$ above the diagonal. It contains all $1’s$ in the lower triangle except for the last row. The last row contains entries from $1$ to $n$ in column numbers $1$ to $n$ respectively. Since the determinant of a triangular matrix is the product of the diagonal entries, thus;
$$
\det{B_n} = (-1)^{n-1} \times (1)^{n-1} \times n
= (-1)^{n-1}n
\quad
\blacksquare
$$
But these hold true for any positive integer value of $n$ and thus the conjectures hold true for any $n\in \mathbb{Z}^+$.