Let $y_1,\dots,y_n$ be a set of i.i.d random variables with mean $\mu$ and variance $\sigma^2$. Can it be shown that $$ \begin{align} \sum_{i=1}^n y_i = O_p(\sqrt{n}), & \quad \quad \text{if} \ E[y_i] = 0, \\ \sum_{i=1}^n y_i = O_p(n), & \quad \quad \text{if} \ E[y_i] \neq 0. \end{align} $$ using the definition of convergence in probability for Big $O_p$ notation?
I saw a simplified explanation for the results in page 4 of these notes but I'm wondering can it be done directly using the the definition of $O_p$, i.e. $X_n = O_p(n)$ if for all $\varepsilon > 0$, there exists $M,N>0$ such that $P(|X_n/n|>M) < \varepsilon$ for all $n > N$.