This is Exercise 4.19 of Roman's "Fundamentals of Group Theory: An Advanced Approach". According to Approach0, it is new to MSE.
The Details:
The set product of two subsets $S,T$ of a group $G$ is given by $$ST=\{st\in G\mid s\in S, t\in T\}.$$
Since definitions vary, Roman's book defines normal as follows:
Definition: A subgroup $H$ of $G$ is normal in $G$, written $H\unlhd G$, if $$aH=Ha$$ for all $a\in G$.
The Question:
Let $\mathcal{F}$ be a family of groups with the following properties:
If $G\in\mathcal{F}$ and $H\cong G$, then $H\in\mathcal{F}$
If $G\in\mathcal{F}$ and $N\unlhd G$, then $G/N\in\mathcal{F}$.
If $N\unlhd G$ and if $N\in\mathcal{F}$ and $G/N\in\mathcal{F}$, then $G\in\mathcal{F}$.
Prove that if $N\in\mathcal{F}$ and $K\in\mathcal{F}$ are subgroups of $G$ with $K\unlhd G$, then $NK\in\mathcal{F}$.
Thoughts:
Two previous questions of mine seem related and they're from the same book (and even the same set of exercises):
Find a property of groups that is inherited by quotients but not by subgroups.
Find a property of groups that is inherited by subgroups but not by quotients.
A guess of mine is that the isomorphism theorems come into play here, especially the second one (since we're aiming for $NK$), except that there's nothing about $N\cap K$ in $\mathcal{F}$.
This seems like it should have a simple answer.
Perhaps a more modest goal would be to show $G\in\mathcal{F}$ if at all possible; it might even be a crucial lemma.
Please help :)