We can use the Riemann criterion to prove that the uniform limit $f$ of a sequence of Riemann integrable functions $(f_n)_n$ is also Riemann integrable.
By uniform convergence, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geqslant N$ we have
$$-\frac{\epsilon}{3(b-a)} < f(x) - f_n(x) < \frac{\epsilon}{3(b-a)}$$
Let $P: a = x_0 < x_1 < \ldots < x_n = b$ be a partition. Since $f(x) = f(x) - f_n(x) + f_n(x),$ it follows that on any partition subinterval $I$,
$$\sup_I f(x) \leqslant \sup_I(f(x) - f_n(x)) + \sup_I f_n(x) < \frac{\epsilon}{3(b-a)}+ \sup_I f_n(x), \\ \inf_I f(x) \geqslant \inf_I(f(x) - f_n(x)) + \inf_I f_n(x) > -\frac{\epsilon}{3(b-a)}+ \inf_I f_n(x).$$
Thus, $ \inf_I f_n(x)- \frac{\epsilon}{3(b-a)} <\inf_I f(x) \leqslant \sup_I f(x) < \sup_I f_n(x)+ \frac{\epsilon}{3(b-a)}. $
Summing over all partition subintervals we get for upper and lower Darboux sums,
$$U(f,P) < \frac{\epsilon}{3} + U(f_n,P), \quad -L(f,P) < \frac{\epsilon}{3} - L(f_n,P),$$
and, hence,
$$U(f,P) - L(f,P) < \frac{2\epsilon}{3} + U(f_n,P) - L(f_n,P).$$
Since $f_n$ is Riemann integrable, there is a partition $P$ such that $U(f_n,P) - L(f_n,P) < \epsilon/3$ and it follows that $U(f,P) - L(f,P) < \epsilon$ proving that $f$ is Riemann integrable.
Now you should be able to prove on your own that the limit of the sequence of integrals is the integral of the limit function by considering that $|f_n(x) - f(x)| \to 0$ uniformly for all $x \in [a,b]$.