I was unsure how to prove this property which seems necessary for the solution to a problem I did recently. Since $N$ is normal, it seems pretty clear that $NH_1 = H_1N$ and $NH_2 = H_2N$ so they are indeed subgroups of $G$. I tried to prove normality directly by taking $nh \in NH_2$ and was able to show that $$nh NH_1 = N nh H_1 = Nn H_1 h$$ using the fact that $H_1$ is normal in $H_2$ and so $h H_1 = H_1 h$. Then, it seems like this problem reduces to showing that $nH_1 = H_1n$ which isn't immediately obvious. In fact, I'm not sure if that's even true.
My latest attempt uses the fact that $NH_1 = H_1N$ and $Nn = N$ so that we can find some $n' \in N$ so that $n'H_1 = H_1n$ which would allow us to conclude $$nh NH_1 = N nh H_1 = n H_1 h = Nn' H_1 h = NH_1nh$$ which is what we wanted but I had some trouble showing that this idea actually worked.
Thank you in advance for your help!