I'm trying to prove for algorithm-purposes that given $a,b,n$ positive integers:
$$2^{n-1}(a^n+b^n)\geq(a+b)^n$$
I tried by induction, and got the step as follows:
$$2^{n}(a^{n+1}+b^{n+1})\geq^?(a+b)^{n+1}$$
I tried using the binomial expansion $(a+b)^n=\sum^n_{k=0} {{n}\choose{k}}a^kb^{n-k}$ and then excluding the last element
$$(a+b)^{n+1}=\sum^{n+1}_{k=0} {{n+1}\choose{k}}a^kb^{n-k+1}=\sum^{n}_{k=0} {{n+1}\choose{k}}a^kb^{n-k}b+{{n+1}\choose{n+1}}a^{n+1}b^0$$$$=\sum^{n}_{k=0} (n+1){{n}\choose{k}}a^kb^{n-k}b+{{n+1}\choose{n+1}}a^{n+1}b^0=[(n+1)b]\sum^{n}_{k=0}{{n}\choose{k}}a^kb^{n-k}+{{n+1}\choose{n+1}}a^{n+1}b^0$$$$=[(n+1)b](a+b)^n+a^{n+1}\leq[(n+1)b]\times2^{n-1}(a^n+b^n)+a^{n+1}$$
Assuming that everything is correct so far, I don't how to proceed from there to get $\leq 2^n(a^{a+1}+b^{n+1})$
My second attempt was by doing the step as follows:
$$2^{n-1}(a^n+b^n)\geq(a+b)^n \setminus\cdot(a+b)$$
$$2^{n-1}(a^n+b^n)(a+b)\geq(a+b)^{n+1}$$
$$2^{n-1}(a^{n+1}+b^{n+1}+a^nb+b^na)\geq(a+b)^{n+1}$$
Now I don't know how to eliminate $a^nb+b^na$, and to proceed to $2^n$
Is there another way to prove this? Or any hints to continue my step?