Let $\{(X_{n}, d_{n})\}_{n\in\mathbb{N}}$ be a sequence of complete metric spaces and $\{f_{n}: X_{n}\to X_{n − 1}\}_{n\in \mathbb{N}}$ a sequence of continuous functions. If $f_{n}$ has a dense image for each $n\in \mathbb{N}$, show that $\bigcap_{n\in \mathbb{N}}(f_{1}\circ f_{2}\circ \cdots \circ f_{n}) (X_{n})$ is dense at $X_{0}$.
My attemps:
if $f_{n}$ has a dense image then $\overline{f_{n}(X_{n})}=X_{n-1}$ I want to show that
$$\overline{\bigcap_{n\in \mathbb{N}}(f_{1} \circ f_{2} \circ \cdots \circ f_{n})(X_{n})} = X_{0}. $$
Let $F_{n}=(f_{1}\circ f_{2} \circ \dots ◦ f_{n})(X_{n})$. By induction, I see that $F_{n+1} ⊆ F_{n} ⊆ X_{0}$. Indeed, if $n=1$, then
$$F_{2}=(f_{1}\circ f_{2})(X_{2})=f_{1}(f_{2}(X_{2}))\subseteq f_{1}(\overline{f_{2}(X_{2}}))=f_{1}(X_{1})=F_{1}$$
if we assume that $F_{k+1}\subseteq F_{k}\subset X_{0}$. Then,
$$F_{k+2} = (f_{1} \circ f_{2} \circ \cdots \circ f_{k+1} \circ f_{k+2})(X_{k+2}) = (f_{1} \circ f_{2} \circ \cdots \circ f_{k+1})(f_{k+2}(X_{k+2}))\subseteq (f_{1} \circ f_{2} \circ \cdots \circ f_{k+1})(\overline{f_{k+2}(X_{k+2})}) = (f_{1} \circ f_{2} \circ \cdots \circ f_{k+1})(X_{k+1})= F_{k+1}\subseteq F_{k}\subseteq X_{0}$$
from the above we have
$$\cdots\subseteq F_{n+1}\subseteq F_{n} \subseteq \cdots \subset F_{2}\subseteq F_{1}$$
then
$$\cdots\subseteq \overline{F_{n+1}}\subseteq \overline{F_{n}} \subseteq \cdots \subset \overline{F_{2}}\subseteq \overline{F_{1}}=X_{0}$$
then
$$\overline{\bigcap_{n\in \mathbb{N}}F_{n} }\subseteq \bigcap_{n\in \mathbb{N}}\overline{F_{n}}\subseteq X_{0} .$$
is my reasoning correct?.I've been thinking that Biare's theorem could be used, but I don't know if it's possible since $F_{n}'s$ don't necessarily open.
If it is, how could the other containment prove?. I appreciate any help
